• Title/Summary/Keyword: vaccine delivery system

Search Result 48, Processing Time 0.024 seconds

The Mucosal Immune System for the Development of New Generation Vaccine

  • Yuki, Yoshikazu;Kiyono, Hiroshi
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2003.06a
    • /
    • pp.55-62
    • /
    • 2003
  • The mucosal immune system provides a first line of defense against invasion of infectious agents via inhalation, ingestion and sexual contact. For the induction of protective immunity at these invasion sites, one must consider the use of the CMIS, which interconnects inductive tissues, including PP and NALT, and effector tissues of the intestinal, respiratory and genitourinary tracts. In order for the CMIS to induce maximal protective mucosal immunity, co-administration of mucosal adjuvant or use of mucosal antigen delivery vehicle has been shown to be essential. When vaccine antigen is administered via oral or nasal route, antigen-specific Th 1 and Th2 cells, cytotoxic T lymphocytes(CTLs) and IgA B cell responses are effectively induced by the CMIS. In the early stages of induction of mucosal immune response, the uptake of orally or nasally administered antigens is achieved through a unique set of antigen-sampling cells, M cells located in follicle-associated epithelium(FAE) of inductive sites. After successful uptake, the antigens are immediately processed and presented by the underlying DCs for the generation of antigen-specific T cells and IgA committed B cells. These antigen-specific lymphocytes are then home to the distant mucosal effector tissues for the induction of antigen-specific humoral(e.g., IgA) and cell-mediated (e.g., CTL and Th1) immune responses in order to form the first line of defense. Elucidation of the molecular/cellular characteristics of the immunological sequence of mucosal immune response beginning from the antigen sampling and processing/presentation by M cells and mucosal DCs followed by the effector phase with antigen-specific lymphocytes will greatly facilitate the design of a new generation of effective mucosal antigen-specific lymphocytes will greatly facilitate the design of a new generation of a new generation of effective mucosal adjuvants and of a vaccine deliver vehicle that maximizes the use of the CMIS.

  • PDF

Perspective vaccines for emerging viral diseases in farm animals

  • Ahmad Mohammad Allam;Mohamed Karam Elbayoumy;Alaa Abdelmoneam Ghazy
    • Clinical and Experimental Vaccine Research
    • /
    • v.12 no.3
    • /
    • pp.179-192
    • /
    • 2023
  • The world has watched the emergence of numerous animal viruses that may threaten animal health which were added to the perpetual growing list of animal pathogens. This emergence drew the attention of the experts and animal health groups to the fact that it has become necessary to work on vaccine development. The current review aims to explore the perspective vaccines for emerging viral diseases in farm animals. This aim was fulfilled by focusing on modern technologies as well as next generation vaccines that have been introduced in the field of vaccines, either in clinical developments pending approval, or have already come to light and have been applied to animals with acceptable results such as viral-vectored vaccines, virus-like particles, and messenger RNA-based platforms. Besides, it shed the light on the importance of differentiation of infected from vaccinated animals technology in eradication programs of emerging viral diseases. The new science of nanomaterials was explored to elucidate its role in vaccinology. Finally, the role of Bioinformatics or Vaccinomics and its assist in vaccine designing and developments were discussed. The reviewing of the published manuscripts concluded that the use of conventional vaccines is considered an out-of-date approach in eliminating emerging diseases. However, these types of vaccines are considered the suitable plan especially in countries with few resources and capabilities. Piloted vaccines that rely on genetic-based technologies with continuous analyses of current viruses should be the aim of future vaccinology. Smart genomics of emerging viruses will be the gateway to choosing appropriate vaccines, regardless of the evolutionary rates of viruses.

Development of mRNA Vaccines/Therapeutics and Their Delivery System

  • Sora Son;Kyuri Lee
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.41-47
    • /
    • 2023
  • The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.

Vaccination for Infants and Children in the Primary Health Care Posts from 1980 to 2009 (보건진료소 영유아 예방접종사업(1980년~2009년))

  • Son, Gye-Soon
    • Journal of Korean Academy of Rural Health Nursing
    • /
    • v.3 no.2
    • /
    • pp.96-103
    • /
    • 2008
  • Purpose: The Study of vaccination for infants and children business in Primary Health Care Posts from 1980 to 2009. Method: look for national essential vaccination look for the change of vaccination by the times in Primary Health Care Posts and the rate of vaccination for infants and children by a administrative report statistics survey of a vaccine delivery system of Public health care institutions investigation about assistance details of vaccination cost in order to raise the rate of vaccination for infants and children. Results: In 1980s, there are many infants and children management object, but now there are rapidly decreasing infants and children management subject of a Primary Health Care Post because of rural exodus phenomenon of 1990's and a low birthrate of 2000's. Currently, the infants and children that registed, and managed to a Primary Health Care Post is most multi-cultural families. A multi-cultural family assistance program is provided these infants and children to the objects. Conclusions: Infant vaccination execution in Primary Health Care Posts showed to high vaccination rate because the prevention of vaccination delay or omission of the interior child who raised geographical accessibility to object sons nowadays it difficult to management of transportation of vaccine and storage management for a little shroud objects limited and management of inoculation business in quality. A main problem is as follows. There are a little vaccine transportation, trouble of proper temperature maintenance of a storage process, and having a lot of vaccine abolition as a little objects, educational training shortage of health care practitioner regarding to execute an inoculation. Therefore, vaccination business needs measures for management in quality in Primary Health Care Posts.

Transdermal Delivery of FITC-Ovalbumin with Microneedle System (마이크로 피부침을 이용한 FITC-OVA의 경피흡수)

  • Jang, Woo-Young;Lee, Chang-Rae;Seo, Seong-Mi;Lee, Bong;Kim, Moon-Suk;Khang, Gil-Son;Lee, Han-Gu;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.403-409
    • /
    • 2005
  • For transdermal delivery of large molecular drugs such as vaccine and protein drugs, novel microneedle treatment device with roll was designed. The roll dimension is 1.43 cm diameter and 2.8 cm perimeter. Total number of microneedle on the roll is 3,360 with $230\;{\mu}m$ height and $740\;{\mu}m$ distance. The pore with $150\;{\mu}m$ depth and $35\;{\mu}m$ diameter on the skin was made by the designed microneedle device. This system could be achieved without pain. The permeation rates of FITC labelled ovalbumin (FITC-OVA, molecular weight: 45,000 g/mol) as a model protein were determined by modified Franz diffusion cells using skins of hairless mice or SD rats which were treated by using microneedle device two or four times. The average penetration fluxes of model protein increased from 674 to $872\;{\mu}g/cm^{2}{\cdot}hr$ as the number of treatment to make pore increased from two to four times. In conclusion, we confirmed the possibility of using the designed microneedle treatment device for transdermal delivery of the large molecular drugs.

Salmonella vector induces protective immunity against Lawsonia and Salmonella in murine model using prokaryotic expression system

  • Sungwoo Park;Eunseok Cho;Amal Senevirathne;Hak-Jae Chung;Seungmin Ha;Chae-Hyun Kim;Seogjin Kang;John Hwa Lee
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.4.1-4.14
    • /
    • 2024
  • Background: Lawsonia intracellularis is the causative agent of proliferative enteropathy and is associated with several outbreaks, causing substantial economic loss to the porcine industry. Objectives: In this study, we focused on demonstrating the protective effect in the mouse model through the immunological bases of two vaccine strains against porcine proliferative enteritis. Methods: We used live-attenuated Salmonella Typhimurium (ST) secreting two selected immunogenic LI antigens (Lawsonia autotransporter A epitopes and flagellin [FliC]-peptidoglycan-associated lipoprotein-FliC) as the vaccine carrier. The constructs were cloned into a Salmonella expression vector (pJHL65) and transformed into the ST strain (JOL912). The expression of immunogenic proteins within Salmonella was evaluated via immunoblotting. Results: Immunizing BALB/c mice orally and subcutaneously induced high levels of LI-specific systemic immunoglobulin G and mucosal secretory immunoglobulin A. In immunized mice, there was significant upregulation of interferon-γ and interleukin-4 cytokine mRNA and an increase in the subpopulations of cluster of differentiation (CD) 4+ and CD 8+ T lymphocytes upon splenocytes re-stimulation with LI antigens. We observed significant protection in C57BL/6 mice against challenge with 106.9 times the median tissue culture infectious dose of LI or 2 × 109 colony-forming units of the virulent ST strain. Immunizing mice with either individual vaccine strains or co-mixture inhibited bacterial proliferation, with a marked reduction in the percentage of mice shedding Lawsonia in their feces. Conclusions: Salmonella-mediated LI gene delivery induces robust humoral and cellular immune reactions, leading to significant protection against LI and salmonellosis.

Drug Delivery Effect Using Biopolymer Chitosan Nanoparticles (생명고분자 키토산의 나노입자를 이용한 약물전달 효과)

  • Lee, Do Hun;Lee, Sang-wha;Yoo, In Sang;Park, Kwon-pil;Kang, Ik Joong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.790-793
    • /
    • 2005
  • Recently, the interest in the extension of human life and personal health has been increased. Accordingly, many researchers in a pharmacy and a medical world have been making efforts to improve the sustained drug release property and the stability of drug release property in a body. Many biological researches have demonstrated that chitosan derivatives are effective, safe absorption enhancers that can improve the delivery efficiency of drug and vaccine, and they are suitable for controlled drug release because they have good stability, bio-compatibility, and biodegradability. In this study the experiment was performed in vivo by utilizing chitosan nanoparticles as a biopolymer to control drug delivery rate at an optimal temperature, pH, and concentration. It was observed that nanoparticles containing insulin could effectively control the blood glucose at a low level.

Induction of Immunity Against Hepatitis B Virus Surface Antigen by Intranasal DNA Vaccination Using a Cationic Emulsion as a Mucosal Gene Carrier

  • Kim, Tae Woo;Chung, Hesson;Kwon, Ick Chan;Sung, Ha Chin;Kang, Tae Heung;Han, Hee Dong;Jeong, Seo Young
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • Delivery of DNA vaccines to airway mucosa would be an ideal method for mucosal immunization. However, there have been few reports of a suitable gene delivery system. In this study we used a cationic emulsion to immunize mice via the intranasal route with pCMV-S coding for Hepatitis B virus surface antigen (HBsAg). Complexing pCMV-S with a cationic emulsion dramatically enhanced HBsAg expression in both nasal tissue and lung, and was associated with increases in the levels of HBs-specific Abs in serum and mucosal fluids, of cytotoxic T lymphocytes (CTL) in the spleen and cervical and iliac lymph nodes, and of delayed-type hypersensitivity (DTH) against HBsAg. In contrast, very weak humoral and cellular immunities were observed following immunization with naked DNA. In support of these observations, a higher proliferative response of spleenocytes was detected in the group immunized with the emulsion/pCMV-S complex than in the group immunized with naked pCMV-S. These findings may facilitate development of an emulsion-mediated gene vaccination technique for use against intracellular pathogens that invade mucosal surfaces.

Platform Technology for Food-Grade Expression System Using the genus Bifidobacterium

  • Park, Myeong-Soo;Kang, Yoon-Hee;Cho, Sang-Hee;Seo, Jeong-Min;Ji, Geun-Eog
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.155-157
    • /
    • 2001
  • Bifidobacterium spp. is nonpathogenic, gram-positive and anaerobic bacteria, which inhabit the intestinal tract of humans and animals. In breast-fed infants, bifidobacteria comprise morethan 90% of the gut bacterial population. Bifidobacteria spp. are used in commericial fermented dairy products and have been suggested to exert health promoting effects on the host by maintaining intestinal microflora balances, improving lactose tolerance, reducing serum cholesterol levels, increasing synthesis of vitamins, and aiding the immune enchancement and anticarcinogenic activity for the host. These beneficial effects of Bifidobacterium are strain-related. Therefore continued efforts to improve strain characteristics are warranted. in these respect, development of vector system for Bifidobacterium is very important not only for the strain improvement but also because Bifidobacterium is most promising in serving as a delivery system for the useful gene products, such as vaccine or anticarcinogenic polypeptides, into human intestinal tract. For developing vector system, we have characterized several bifidobacterial plasmids at genetic level and developed several shuttle vectors between E. coli and Bifidobacterium using them. Also, we have cloned and sequenced several metabolic genes and food grade selection marker. Also we have obtained bifidobacterial surface protein, which will be used as the mediator for surface display of foreign genes. Recently we have succeeded in expressing amylase and GFP in Bifidobacterium using our own expression vector system. Now we are in a very exciting stage for the molecular breeding and safe delivery system using probiotic Bifidobacterium strains.

  • PDF

Efficient Delivery of Toxoid Antigens using Micro/Nano-carriers (마이크로/나노-운반체를 이용한 톡소이드 항원의 효과적인 전달 방법)

  • Park, Ga-Young;Ahn, Gna;Lee, Se Hee;Kim, Sang Bum;Kim, Yang-Hoon;Ahn, Ji-Young
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.496-507
    • /
    • 2018
  • Immunization has been performed for centuries and is generally accepted as a sustainable method of controlling bacteria, viruses, and mediated and infectious diseases. Despite many studies having been performed on animal subjects to demonstrate the importance of toxin immunity, the use of toxoid vaccines in humans and animals has been limited for a long time. Recently, the development of the toxoid antigen delivery system has been facilitated using novel nano-medicinal technology. The micro/nano-carrier has been used to improve vaccination coverage as well as reduce vaccine costs. A micro/nano-carrier is a micro/nano-sized material that delivers immune cargo, including recombinant or peptide toxoid antigens. These toxoid antigens are either encapsulated in the interior or displayed on the surface of micro/nano-carriers as a way to protect them from the cellular machinery. In particular, the combination of toxoid antigens and micro/nano-carriers can induce phagocytosis through the specific interactions between GCs and macrophages; thus, the toxoid antigens can be delivered easily into the macrophages. This paper reviews recent achievements of micro/nano-carriers in the field of vaccine delivery systems such as microbial ghost cells (GCs, Bacterial ghost cells and Yeast ghost cells), gene-manipulated outer membrane vesicles (OMVs) and biocompatible, polymer-based nanoparticles (NPs, NP-Carrier and NP-Cage). Finally, this review shows various aspects in terms of the hosts' immune responses.