• Title/Summary/Keyword: vacancy defects

Search Result 84, Processing Time 0.024 seconds

HgCdTe Junction Characteristics after the Junction Annealing Process (열처리 조건에 따른 HgCdTe의 접합 특성)

  • Jeong, Hi-Chan;Kim, Kwan;Lee, Hee-Chul;Kim, Hong-Kook;Kim, Jae-Mook
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.2
    • /
    • pp.89-95
    • /
    • 1995
  • The structure of boron ion-implanted pn junctio in the vacancy-doped p-type HgCdTe was investigated with the differential Hall measurement. The as-implanted junction showed the electron concentration as high as 1${\times}10^{18}/cm^{3}$ and the junction depth of 0.6.mu.m. When the HgCdTe junction was heated in oven, the electron concentration near the junction decreased and the junction depth increased as the annealing temperature and time increased. The junction structure after the thermal annealing was n$^{+}$/n$^{-}$/p. For the 200.deg. C 20min annealed sample, the electron mobility was 10$^{4}cm^{2}/V{\cdot}$s near the surface(n$^{+}$), and was larger thatn 10$^{5}cm^{2}/V{\cdot}$s near the junction(n$^{+}$). The junction formation mechanism is conjectured as follows. When HgCdTe is ion-implanted, the ion energy generates crystal defecis and displaced Hg atoms HgCdTe is ion-implanted, the ion energy generates crystal defecis and displaced Hg atoms near the surface. The displaced Hg vacancies diffuse in easily by the thernal treatment and a fill the Hg vacancies in the p-HgCdTe substrate. With the Hg vacancies filled completely, the GfCdTe substrate becomes n-type because of the residual n-type impurity which was added during the wafer growing. Therefore, the n$^{+}$/n$^{-}$/p regions are formed by crystal defects, residual impurities, and Hg vacancies, respectively.

  • PDF

Polaron Conductivity of Rutile Doped with MgO (MgO 도프된 Rutile의 Polaron 전도도)

  • Kim, Keu-Hong;Kim, Hyung-Tack;Choi, Jae-Shi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.215-224
    • /
    • 1987
  • The electrical conductuctivity measurements have been made on polycrystalline samples of various compositions in the $MgO-TiO_2$ system from 600 to $1100^{\circ}C$ under $Po_2$'s of $10^{-8}\;to\;10^{-1}$atm. Plots of log ${\sigma}$ vs. 1/T at constant $Po_2$ are found to be linear with the inflections, and the activation energies are 1.94eV for the intrinsic range and 0.48eV for the extrinsic range, respectively. The log ${\sigma}$ vs. log $Po_2$ curves are found to be linear at constant temperature, and the conductivity dependences of $Po_2$ are closely approximated by ${\sigma}\;{\alpha}\;Po_2^{-1/6}$ for the extrinsic and ${\sigma}\;{\alpha}\;Po_2^{-1/4}$ for the intrinsic range, respectively. The dominant defects in this system are believed to be oxygen vacancy for the extrinsic and $Ti^{3-}$ interstitial for the intrinsic range. The conduction mechanisms in both the extrinsic and the intrinsic ranges are proposed by the results of the electrical conductivity dependence on the oxygen partial pressure. Polaron model was suggested in the extrinsic region by the conductivity dependences of temperature and $Po_2$.

  • PDF

A Study on the Phase Transition of Heat-Treated CdS Thin Films (열처리한 CdS 박막의 구조변환에 관한 연구)

  • Kim, Geun-Muk;Han, Eun-Ju
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.782-786
    • /
    • 1999
  • CdS thin films prepared by vaccum evaperation have been studied the characteristcs of room temperature of scanning electron microscoe(SEM), X-ray diffraction(XRD), energy dispersive X-ray(EDX), and photoluminescence(PL)spectra. The cubic to hexagonal structure phase transitin has been determined to be $350^{\circ}C~450^{\circ}C$. The results of compensated donor levels of $O_2$and Si impurites at S-vacancy were identified CdO and $Cd_2SiO_4$defects. The edge emission peaks measured by PL of room temperature was donor level accoding the theses $O_2$and Si impurites were due to 2.43eV($350^{\circ}C$) and 2.42eV(55$0^{\circ}C$) peak energies respectively. The structure transition annealing temperature was measured $370^{\circ}C$ similar to Ariza-Calderons result, $374^{\circ}C$ by CBD films.

  • PDF

Preparation of Intrinsic ZnO Films at Low Temperature Using Oxidation of ZnS Precursor and Characterizion of the Films

  • Park, Do Hyung;Cho, Yang Hwi;Shin, Dong Hyeop;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.115-121
    • /
    • 2013
  • ZnO film has been used for CIGS solar cells as a buffer layer as itself or by doping Mg and Sn; ZnO film also has been used as a transparent conducting layer by doping Al or B for solar cells. Since ZnO itself is a host material for many applications it is necessary to understand the electrical and optical properties of ZnO film itself with various preparation conditions. We prepared ZnO films by converting ZnS precursor into ZnO film by thermal annealing. ZnO film was formed at low temperature as low as $500^{\circ}C$ by annealing a ZnS precursor layer in air. In the air annealing, the electrical resistivity decreased monotonically with increasing annealing temperature; the intensity of the green photoluminescence at 505 nm increased up to $750^{\circ}C$ annealing. The electrical resistivity further decreased and the intensity of green emission also increased in reducing atmospheres. The results suggest that deep-level defects originated by oxygen vacancy enhanced green emission, which reduce light transmittance and enhance the recombination of electrons in conduction band and holes in valence. More oxidizing environment is necessary to obtain defect-free ZnO film for higher transparency.

Microstructure and Electrical Resistivity of Ink-Jet Printed Nanoparticle Silver Films under Isothermal Annealing (잉크젯 프린팅된 은(Ag) 박막의 등온 열처리에 따른 미세조직과 전기 비저항 특성 평가)

  • Choi, Soo-Hong;Jung, Jung-Kyu;Kim, In-Young;Jung, Hyun-Chul;Joung, Jae-Woo;Joo, Young-Chang
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.453-457
    • /
    • 2007
  • Interest in use of ink-jet printing for pattern-on-demand fabrication of metal interconnects without complicated and wasteful etching process has been on rapid increase. However, ink-jet printing is a wet process and needs an additional thermal treatment such as an annealing process. Since a metal ink is a suspension containing metal nanoparticles and organic capping molecules to prevent aggregation of them, the microstructure of an ink-jet printed metal interconnect 'as dried' can be characterized as a stack of loosely packed nanoparticles. Therefore, during being treated thermally, an inkjet-printed interconnect is likely to evolve a characteristic microstructure, different from that of the conventionally vacuum-deposited metal films. Microstructure characteristics can significantly affect the corresponding electrical and mechanical properties. The characteristics of change in microstructure and electrical resistivity of inkjet-printed silver (Ag) films when annealed isothermally at a temperature between 170 and $240^{\circ}C$ were analyzed. The change in electrical resistivity was described using the first-order exponential decay kinetics. The corresponding activation energy of 0.44 eV was explained in terms of a thermally-activated mechanism, i.e., migration of point defects such as vacancy-oxygen pairs, rather than microstructure evolution such as grain growth or change in porosity.

Study on the Spectroscopic Characteristics of Irradiated Diamonds (전자빔 처리된 다이아몬드의 분광학적 특성 연구)

  • Shon, Shoo-Hack;Kim, Bea-Seoub;Jang, Yun-Deuk;Kim, Jong-Rang;Kim, Jong-Gun;Kim, Jeong-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.407-415
    • /
    • 2009
  • The change of the nitrogen-related centers and the color change of electron beam irradiated type Ia natural diamonds were studied. The irradiation of diamond with high-energy electron beam creates lattice defects which are neutral single vacancy $V^0$. It increased with increasing electron dose density. The B aggregation seems to produce vacancies more easily than the A aggregation, because diamonds with more B aggregation have more platelets, which are sufficient breakable size by electron beam. Greenish blue color of irradiated diamond is changed to darker with increasing electron dose density. GR1 centers with a zero-phonon line at 741 nm and phonon sidebands make transmit visible light at 530 nm and it moves to 500 nm with higher intensity of GR1 centers.

The Characterization of Nb3Ge by Slow Positron Annihilation Spectroscopy (저에너지 양전자 소멸 분광법을 이용한 Nb3Ge 박막 특성)

  • Lee, C.Y.;Bae, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.489-494
    • /
    • 2010
  • Enhance signal-to-noise ratio, slow positron coincidence Doppler Broadening method has been applied to study of characteristics of $Nb_3Ge$ superconductor film, which were performed from 20 K to 300 K sample temperature near Tc of it. In this investigation the numerical analysis of the Doppler spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the spectrum and the total counts of whole spectrum. The S-parameter values between 0.598 and 0.594 were decreased while the temperature were decreasing, that indicated the voids into the samples. The temperature dependence came from specific positron trapping rate into the vacancy-type defects. It is believed that the positrons annihilate with normal-electrons instead of super-electrons in the Nb3Ge superconductor.

Electrical Conductivity of the Solid Solutions X $ZrO_2+ (1-X) Yb_2O_3; 0.01{\leq}X{\leq}0.09$

  • Choi Byoung Ki;Jang Joon Ho;Kim, Seong Han;Kim, Hong Seok;Park, Jong Sik;Kim Yoo Young;Kim, Don;Lee Sung Han;Yo Chul Hyun;Kim Keu Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.248-252
    • /
    • 1992
  • $ZrO_2-dopedYb_2O_3solid$ solutions containing 1, 3, 5, 7 and 9 mol% $ZrO_2were$ synthesized from spectroscopically pure $Yb_2O_3$ and $ZrO_2$ powders and found to be rare earth C-type structure by XRD technique. Electrical conductivities were measured as a function of temperatures from 700 to $1050^{\circ}C$ and oxygen partial pressures from 1${\times}$$10^-5$ to 2${\times}$ $10^-1$atm. The electrical conductivities depend simply on temperature and the activation energies are determined to be 1.56-1.68 $_eV$. The oxygen partial pressure dependence of the electrical conductivity shows that the conductivity increases with increasing oxygen partial pressure, indicating p-type semiconductor. The $PO_2$ dependence of the system is nearly power of 1/4. It is suggested from the linearity of the temperature dependence of electrical conductivity and only one value of 1/n that the solid solutions of the system have single conduction mechanism. From these results, it is concluded that the main defects of the system are negatively doubly charged oxygen interstitial in low. $ZrO_2doping$ level and negatively triply charged cation vacancy in high doping level and the electrical conduction is due to the electronic hole formed by the defect structure.

Intrinsic and Extrinsic Defects and Their Itinerant Electronic Conductivity of Ceria (본성 및 외성 영역에서 Ceria 의 결함구조 및 자유전자 전도도)

  • Keu Hong Kim;Hyun Koen Suh;Young Sik Kwon;Jae Shi Choi
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.389-394
    • /
    • 1987
  • The electrical conductivity of CeO$_2$ has been measured in the temperature range of 300 to 1000${\circ}$C under the oxygen pressures of 10$^{-5}$ to 10$^{-1}$ atm. Plots of log ${\sigma}$ vs. 1/T at constant PO$_2$ are found to be linear with an inflection, and the activation energy obtained from the slopes appears to be 2.16 eV for the intrinsic region. The conductivity dependences on PO$_2$ at the above temperature range are closely approximated by ${\sigma}$ ${\alpha}$PO$_2^{-1/4}$ for the intrinsic and ${\sigma}$ ${\alpha}$PO$_2^{-1/6.2}$ for the extrinsic, respectively. The dominant defects in this sample are believed to be Ce$^{3{\cdot}}$ interstitial for the intrinsic and the (Vo-2e') for the extrinsic range. The interpretations of conductivity dependences on temperature and $PO_2$ are presented, and conduction mechanisms are proposed to explain the data.

  • PDF

A study on the electrolytic properties of $CaF_2$ crystals with $YF_3$ addition ($YF_3 $ 첨가에 따른 $CaF_2 $ 결정의 고체전해질 특성에 관한 연구)

  • Cha, Y.W.;Park, D.C.;Orr, K.K.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.21-32
    • /
    • 1994
  • $CaF_2$ crystals were grown with various growth rates by Bridgman method, and the electrical properties of these were studied to examine the changes of ionic conductivities with growth rates by AC Impedance Analyzer. As the growth rates were higher, $CaF_2$ crystals were grown to polycrystals from single crystal. And as grain boundaries and various defects were altered, the ionic conductivities were changed dramatically. $YF_3$ added to $CaF_2$ for disorderizing $CaF_2$ structure and improving the number of $F^-$ carriers and vacancies in $CaF_2$ crystals. Then $Ca_{1-x}Y_XF_{2+X}$ crystals were gained. And the ionic conductivities of $Ca_{1-x}Y_XF_{2+X}$ crystals were investigated with $YF_3$ addition. The ionic conductivities of $CaF_2$ and $Ca_{1-x}Y_XF_{2+X}$ crystals with temperatures were compared. In addition, the effects of clusterings and defects on the electrical properties of solid electrolytes were researched.

  • PDF