• Title/Summary/Keyword: v-ray

Search Result 2,499, Processing Time 0.029 seconds

Thermal Characteristics of Rotating Anode X-ray Tube with Emissivity in Aging Process for Digital Radiography

  • Lee, Seok Moon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.125-131
    • /
    • 2015
  • We investigated the thermal characteristics of rotating anode X-ray tube to develop it for digital radiography by using computer simulation. The target which is the area of the anode struck by electrons is the most important component to get a long life of X-ray tube. So we analyze the thermal characteristics of the target and rotor assembly according to their emissivity by using ANSYS transient thermal simulation and then compare with the measured data of the target temperature operating in aging process of X-ray tube. Especially, keeping the lead coated layer as the role of metal lubricant on ball bearing enables to prevent the noise in rotating anode. The simulation result showed that its temperature was under the melting point of the lead in X-ray tube for digital radiography with 1.2 mm large focal spot 0.6 mm small focal spot and 150 kV tube voltage. We also investigated the relationship between the diameter of the anode shaft and the temperature of the anode and rotor assembly. It has been confirmed that the smaller anode shaft could be good for the rotor thermal characteristics.

TURBULENCE PRODUCED BY TSUNAMIS IN GALAXY CLUSTERS

  • FUJITA YUTAKA;MATSUMOTO TOMOAKI;WADA KEIICHI
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.571-574
    • /
    • 2004
  • Clusters of galaxies are filled with X-ray emitted hot gas with the temperature of T ${\~}$2-10 keV. Recent X-ray observations have been revealing unexpectedly that many cluster cores have complicated, peculiar X-ray structures, which imply dynamical motion of the hot gas. Moreover, X-ray spectra indicate that radiative cooling of the cool gas is suppressed by unknown heating mechanisms (the 'cooling flow problem'). Here we propose a novel mechanism reproducing both the inhomogeneous structures and dynamics of the hot gas in the cluster cores, based on state-of-the-art hydrodynamic simulations. We showed that acoustic-gravity waves, which are naturally expected during the process of hierarchical structure formation of the universe, surge in the X-ray hot gas, causing a serous impact on the core. This reminds us of tsunamis on the ocean surging into an distant island. We found that the waves create fully-developed, stable turbulence, which reproduces the complicated structures in the core. Moreover, if the wave amplitude is large enough, they can suppress the cooling of the core. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.

LONG-TERM X-RAY VARIABILITIES OF THE SEYFERT GALAXY MCG-2-58-22 : SECULAR FLUX DECREASE AND FLARES

  • CHOI CHUL-SUNG;DOTANI TADAYASU;CHANG HEON- YOUNG;YI INSU
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • We have studied the long-term X-ray light curve (2-10 keV) of the luminous Seyfert 1 galaxy MCG-2-58-22 by compiling data, from various X-ray satellites, which together cover more than 20 years. We have found two distinct types of time variations in the light curve. One is a gradual and secular decrease of the X-ray flux, and the other is the episodic increase of X-ray flux (or flare) by a factor of 2-4 compared with the level expected from the secular variation. We detected 3 such flares in total; a representative duration for the flares is $\~$2 years, with intervening quiescent intervals lasting $\~$6-8 years. We discuss a few possible origins for these variabilities. Though a standard disk instability theory may explain the displayed time variability in the X-ray light curve, the subsequent accretions of stellar debris, from a tidal disruption event caused by a supermassive black hole in MCG-2-58-22, cannot be ruled out as an alternative explanation.

Hyperoside Protects Cells against Gamma Ray Radiation-Induced Apoptosis in Hamster Lung Fibroblast

  • Piao, Mei Jing;Kim, Ki Cheon;Cho, Suk Ju;Chae, Sungwook;Kang, Sam Sik;Hyun, Jin Won
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Ionizing radiation, including that evoked by gamma (${\gamma}$)-rays, induces oxidative stress through the generation of reactive oxygen species, resulting in apoptosis, or programmed cell death. This study aimed to elucidate the radioprotective effects of hyperoside (quercetin-3-O-galactoside) against ${\gamma}$-ray radiation-induced apoptosis in Chinese hamster lung fibroblasts, V79-4 and demonstrated that the compound reduced levels of intracellular reactive oxygen species in ${\gamma}$-ray-irradiated cells. Hyperoside also protected irradiated cells against DNA damage (evidenced by pronounced DNA tails and elevated phospho-histone H2AX and 8-oxoguanine content) and membrane lipid peroxidation. Furthermore, hyperoside prevented the ${\gamma}$-ray-provoked reduction in cell viability via the inhibition of apoptosis through the increased levels of Bcl-2, the decreased levels of Bax and cytosolic cytochrome c, and the decrease of the active caspase 9 and caspase 3 expression. Taken together, these results suggest that hyperoside defend cells against ${\gamma}$-ray radiation-induced apoptosis by inhibiting oxidative stress.

A Study on Conductivity Characteristics of the Insulating Oil for X-ray Tube Housing (X선장치용(線裝置用) 절연유(絶緣油)의 도전특성(導電特性)에 관한 연구(硏究))

  • Kim, Young-Il;Lee, Duck-Chool;Chung, Yon-Tack
    • Journal of radiological science and technology
    • /
    • v.9 no.1
    • /
    • pp.73-81
    • /
    • 1986
  • This paper carried out an experiment on the characteristics of time, temperature, electric field and the dependense of electrode materials and gap length by the conduction current of the insulating oil used for x-ray tube housing. The obtained results can be summarized as following: 1. In the x-ray tube housing insulating oil with vacuum condition, conduction current is declined more than the x-ray tube housing insultaing oil with the air, and is held stable states. 2. At the low electric field the higher temperature of the x-ray tube housing insulating oil is increased, the more conduction current. 3. The dependence of electrode material is appeared at the low electric field and the short gap length than the high and the long with Fe> Cu >Al. 4. At the I-E characteristics, the low electric field than 1000 [V/cm] is appeared Ohm's law region, and the high become saturation region. 5. At the same electric field, the longer gap length become, the more conduction current is increased, and the same applied voltage, the longer, the less conduction current is decreased, the less low than high temperature x-ray tube housing insulating oil.

  • PDF

A Polycrystalline CdZnTe Film and Its X-ray Response Characteristics for Digital Radiography

  • Kim, Jae-Hyung;Park, Chang-Hee;Kang, Sang-Sik;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.5
    • /
    • pp.15-18
    • /
    • 2003
  • The Cd$\_$1-x/Zn$\_$x/Te film was produced by thermal evaporation for the flat-panel X-ray detector. The crystal structure and the surface morphology of poly crystalline Cd$\_$1-x/Zn$\_$x/Te film were examined using XRD and SEM, respectively. The leakage current and X-ray sensitivity of the fabricated films were measured to analyze the X-ray response characteristic of Zn in a polycrystalline CdZnTe thin film. The leakage current and the output charge density of Cd$\_$0.7/Zn$\_$0.3/Te thin film were measured to 0.3 1nA/$\textrm{cm}^2$ and 260 pC/$\textrm{cm}^2$ at an applied voltage of 2.5 V/$\mu\textrm{m}$, respectively. Experimental results showed that the increase of Zn doping rates in Cd$\_$1-x/Zn$\_$x/Te detectors reduced the leakage current and improved the X-ray sensitivity significantly. The leakage current was drastically diminished by the formation of thin parylene layer in the Cd$\_$0.7/Zn$\_$0.3/Te detector.

Simulation of Beta Rays from Tritium with Cathode Rays (음극선을 이용한 삼중수소 베타선 모사)

  • Kim, KwangSin;Lee, Sook-Kyung;Son, Soon-Hwan;Lim, Hoon;Lee, Dong-Hwan
    • Journal of Radiation Industry
    • /
    • v.2 no.3
    • /
    • pp.141-148
    • /
    • 2008
  • Beta rays emitted from tritium in titanium tritide film were simulated with cathode rays of a scanning electron microscope to investigate the effect of beta rays from tritium on semiconductor devices. The cathode ray currents, which vary with the change of applied energy and beam spot size, were measured with Faraday cup. The current from the semiconductor device irradiated with cathode rays at various conditions was measured. The cathode ray current increased with the increase of spot size to a maximum then decreased when the spot sized increased further. The magnitude of current produced in the semiconductor device is proportional to the magnitude of cathode ray current. The magnitude of cathode ray current at each energy level was matched to the intensity of beta ray to simulate the tritium beta ray spectrum. Then the semiconductor characteristics were analyzed with I-V curves.

System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications

  • Lee, Seho;Oh, Ohsung;Kim, Youngju;Lee, Seung Wook;Kim, Insoo;Kim, Jinkyu
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1827-1833
    • /
    • 2018
  • X-ray grating interferometry has been an active area of research in recent years. In particular, various studies have been carried out for the practical use of the x-ray grating interferometer in medical and industrial fields. For the commercialization of the system, it needs to be optimized for its application. In this study, we have developed a prototype of the compact high energy x-ray grating interferometer of which the high effective energy and compactness is of our primary feature of design. We have designed the Talbot-Lau x-ray interferometer in a symmetrical geometry with an effective energy of 54.3 keV. The system has a source-to-analyzer grating distance of 788.4 mm, which is compact enough for a commercial product. In a normal operation, it took less than ten seconds to acquire a set of phase stepping images. The acquired images had a maximum visibility of about 15%, which is relatively high compared with the visibilities of the other high-energy grating interferometric systems reported so far.

Experimental Evaluation of Scattered X-Ray Spectra due to X-Ray Therapeutic and Diagnosis Equipment for Eye Lens Dosimetry of Medical Staff

  • Kowatari, Munehiko;Nagamoto, Keisuke;Nakagami, Koich;Tanimura, Yoshihiko;Moritake, Takashi;Kunugita, Naoki
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.39-49
    • /
    • 2022
  • Background: For proper monitoring of the eye lens dose, an appropriate calibration factor of a dosimeter and information about the mean energies of X-rays are indispensable. The scattered X-ray energy spectra should be well characterized in medical practices where eye lenses of medical staffs might be high. Materials and Methods: Scattered X-ray energy spectra were experimentally derived for three different types of X-ray diagnostic and therapeutic equipment, i.e., the computed tomography (CT) scan, the angiography and the fluoroscopy. A commercially available CdZnTe (CZT) spectrometer with a lead collimator was employed for the measurement of scattered X-rays, which was performed in the usual manner. Results and Discussion: From the obtained energy spectra, the mean energies of the scattered X-rays lied between 40 and 60 keV. This also agreed with that obtained by the conventional half value layer method. Conclusion: The scattered X-rays to which medical workers may be exposed in the region around the eyes were characterized by means of spectrometry. The obtained mean energies of the scattered X-rays were found to match the flat region of the dosimeter response.

Impacts of Saudi Arabian fly ash on the structural, physical, and radiation shielding properties of clay bricks rich vermiculite mineral

  • Aljawhara H. Almuqrin;Abd Allh M. Abd El-Hamid;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2324-2331
    • /
    • 2024
  • The current study investigated Saudi Arabian oil fly ash impacts on Egyptian clay bricks' structural and radiation shielding properties. To produce the required bricks, crushed clay minerals from the Hafafit area were mixed with 0, 10, 20, 30, and 40 % wt.% Saudi Arabian oil fly ash and pressed at a pressure rate of 68.55 MPa. Identification of the minerals in the chosen clay was achieved via X-ray diffraction. Additionally, the material's morphology and chemical composition were determined through scanning electron microscope and energy-dispersive X-ray. The fabricated bricks' density was reduced by 36.3 % through increasing the concentration of fly ash from 0 to 40 wt%. Then, the fly ash addition's influence on the fabricated clay bricks' γ-ray shielding properties was investigated by Monte Carlo simulation, which found a reduction in the fabricated bricks' linear attenuation coefficient (LAC) by 41.2, 36.0, 33.8, and 33.8 % at the 0.059, 0.103, 0.662, and 1.252 MeV γ-ray energies, respectively. The LAC reduction caused an increase in the fabricated bricks' half-value thickness, transmission factor, and the equivalent thickness of the lead. Moreover, the thicker fabricated sample thicknesses were found to have high γ-ray shielding capacity and can thus be used in radiation shielding applications.