Browse > Article
http://dx.doi.org/10.3938/jkps.73.1827

System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications  

Lee, Seho (School of Mechanical Engineering, Pusan National University)
Oh, Ohsung (School of Mechanical Engineering, Pusan National University)
Kim, Youngju (School of Mechanical Engineering, Pusan National University)
Lee, Seung Wook (School of Mechanical Engineering, Pusan National University)
Kim, Insoo (EB Tech Co., Ltd)
Kim, Jinkyu (EB Tech Co., Ltd)
Abstract
X-ray grating interferometry has been an active area of research in recent years. In particular, various studies have been carried out for the practical use of the x-ray grating interferometer in medical and industrial fields. For the commercialization of the system, it needs to be optimized for its application. In this study, we have developed a prototype of the compact high energy x-ray grating interferometer of which the high effective energy and compactness is of our primary feature of design. We have designed the Talbot-Lau x-ray interferometer in a symmetrical geometry with an effective energy of 54.3 keV. The system has a source-to-analyzer grating distance of 788.4 mm, which is compact enough for a commercial product. In a normal operation, it took less than ten seconds to acquire a set of phase stepping images. The acquired images had a maximum visibility of about 15%, which is relatively high compared with the visibilities of the other high-energy grating interferometric systems reported so far.
Keywords
X-ray phase contrast imaging; Talbot-Lau interferometry; High energy phase contrast imaging; Dark-field imaging; compact design;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Momose, T. Takeda, Y. Itai and K. Hirano, Nat. Med. 2, 473 (1996).   DOI
2 S. W. Lee et al., J. Korean Phys. Soc. 71, 9 (2017).
3 A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai and Y. Suzuki, Jpn. J. of Appl. Phys. 42, L866 (2003).   DOI
4 F. Pfeiffer, T. Weitkamp, O. Bunk and C. David, Nat. Phys. Lett. 81, 3287 (2002).
5 F. Pfeiffer et al., Nat. Mater 7, 134 (2008).   DOI
6 T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova et al., J. Appl. Phys. 106, 054703 (2009).   DOI
7 A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer and D. Stutman, Med. Phys. 41, 2 (2014).
8 P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel et al., J. Instrum. 5, P10008 (2010).   DOI
9 A. Sarapata, M. Willner, M. Walter, T. Duttenhofer, K. Kaiser et al., Opt. Express 23, 1 (2015).   DOI
10 F. Horn, C. Hauke, S. Lachner, V. Ludwig, G. Pelzer et al., Proc. of SPIE 9783, 97830 (2016).
11 F. Horn, K. Gelse, S. Jabari, C. Hauke, S. Kaeppler et al., Phys. Med. Biol. 62, 6729 (2017).   DOI
12 A. Momose, W. Yashiro and Y. Takeda, Jpn. J. Appl. Phys. 47, 10 (2008).
13 S. Bachche, M. Nonoguchi, K. Kato, M. Kageyama, T. Koike et al., Proc. of SPIE 9964, 99640 (2016).
14 C. Hauke, F. Horn, G. Pelzer, J. Rieger, S. Lachner et al., Proc. of SPIE 9783, 97835 (2016).
15 L. B. Gromann, F. D. Marco, K. Wiler, P. B. Noel, K. Scherer et al., Sci. Rep. 7, 4807 (2017).   DOI
16 T. Thuring, M. Abis, Z. Wang, C. David and M. Stampanoni, Sci. Rep. 4, 5198 (2014).
17 A. Momose, H. Kuwabara and W. Yashiro, Appl. Phys Express 4, 066603 (2011).   DOI
18 http://henke.lbl.gov/opticalconstants/getdb2.html.
19 https://physics.nist.gov/cgi-bin/Xcom/xcom2.
20 S. Marathe, L. Assoufid, X. Xiao, K. Ham, W. W. Johnson and L. G. Butler, Rev. Sci. Instrum. 85, 013704 (2014).   DOI
21 C. Kottler, V. Revol, R. Kaufmann and C. Urban, J. Appl. Phys. 108, 114906 (2010).   DOI
22 T. J. Schroter, F. J. Koch, P. Meyer, D. Kunka, J. Meiser et al., Rev. Sci. Instrum. 88, 015104 (2017).   DOI
23 T. Koelhler, H. Daerr, G. Martens, N. Kuhn, S. Loscher et al., Med. Phys. 42, 4 (2015).
24 S. Bachche, M. Nonoguchi, K. Kato, M. Kageyama, T. Koike et al., Sci. Rep. 7, 6711 (2017).   DOI