DOI QR코드

DOI QR Code

System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications

  • Lee, Seho (School of Mechanical Engineering, Pusan National University) ;
  • Oh, Ohsung (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Youngju (School of Mechanical Engineering, Pusan National University) ;
  • Lee, Seung Wook (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Insoo (EB Tech Co., Ltd) ;
  • Kim, Jinkyu (EB Tech Co., Ltd)
  • Received : 2018.10.08
  • Accepted : 2018.11.22
  • Published : 2018.12.30

Abstract

X-ray grating interferometry has been an active area of research in recent years. In particular, various studies have been carried out for the practical use of the x-ray grating interferometer in medical and industrial fields. For the commercialization of the system, it needs to be optimized for its application. In this study, we have developed a prototype of the compact high energy x-ray grating interferometer of which the high effective energy and compactness is of our primary feature of design. We have designed the Talbot-Lau x-ray interferometer in a symmetrical geometry with an effective energy of 54.3 keV. The system has a source-to-analyzer grating distance of 788.4 mm, which is compact enough for a commercial product. In a normal operation, it took less than ten seconds to acquire a set of phase stepping images. The acquired images had a maximum visibility of about 15%, which is relatively high compared with the visibilities of the other high-energy grating interferometric systems reported so far.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. A. Momose, T. Takeda, Y. Itai and K. Hirano, Nat. Med. 2, 473 (1996). https://doi.org/10.1038/nm0496-473
  2. S. W. Lee et al., J. Korean Phys. Soc. 71, 9 (2017).
  3. A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai and Y. Suzuki, Jpn. J. of Appl. Phys. 42, L866 (2003). https://doi.org/10.1143/JJAP.42.L866
  4. F. Pfeiffer, T. Weitkamp, O. Bunk and C. David, Nat. Phys. Lett. 81, 3287 (2002).
  5. F. Pfeiffer et al., Nat. Mater 7, 134 (2008). https://doi.org/10.1038/nmat2096
  6. T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova et al., J. Appl. Phys. 106, 054703 (2009). https://doi.org/10.1063/1.3208052
  7. A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer and D. Stutman, Med. Phys. 41, 2 (2014).
  8. C. Kottler, V. Revol, R. Kaufmann and C. Urban, J. Appl. Phys. 108, 114906 (2010). https://doi.org/10.1063/1.3512871
  9. P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel et al., J. Instrum. 5, P10008 (2010). https://doi.org/10.1088/1748-0221/5/10/P10008
  10. A. Sarapata, M. Willner, M. Walter, T. Duttenhofer, K. Kaiser et al., Opt. Express 23, 1 (2015). https://doi.org/10.1364/OE.23.000001
  11. F. Horn, C. Hauke, S. Lachner, V. Ludwig, G. Pelzer et al., Proc. of SPIE 9783, 97830 (2016).
  12. F. Horn, K. Gelse, S. Jabari, C. Hauke, S. Kaeppler et al., Phys. Med. Biol. 62, 6729 (2017). https://doi.org/10.1088/1361-6560/aa7721
  13. C. Hauke, F. Horn, G. Pelzer, J. Rieger, S. Lachner et al., Proc. of SPIE 9783, 97835 (2016).
  14. L. B. Gromann, F. D. Marco, K. Wiler, P. B. Noel, K. Scherer et al., Sci. Rep. 7, 4807 (2017). https://doi.org/10.1038/s41598-017-05101-w
  15. T. Thuring, M. Abis, Z. Wang, C. David and M. Stampanoni, Sci. Rep. 4, 5198 (2014).
  16. A. Momose, H. Kuwabara and W. Yashiro, Appl. Phys Express 4, 066603 (2011). https://doi.org/10.1143/APEX.4.066603
  17. A. Momose, W. Yashiro and Y. Takeda, Jpn. J. Appl. Phys. 47, 10 (2008).
  18. http://henke.lbl.gov/opticalconstants/getdb2.html.
  19. https://physics.nist.gov/cgi-bin/Xcom/xcom2.
  20. S. Marathe, L. Assoufid, X. Xiao, K. Ham, W. W. Johnson and L. G. Butler, Rev. Sci. Instrum. 85, 013704 (2014). https://doi.org/10.1063/1.4861199
  21. T. J. Schroter, F. J. Koch, P. Meyer, D. Kunka, J. Meiser et al., Rev. Sci. Instrum. 88, 015104 (2017). https://doi.org/10.1063/1.4973632
  22. T. Koelhler, H. Daerr, G. Martens, N. Kuhn, S. Loscher et al., Med. Phys. 42, 4 (2015).
  23. S. Bachche, M. Nonoguchi, K. Kato, M. Kageyama, T. Koike et al., Sci. Rep. 7, 6711 (2017). https://doi.org/10.1038/s41598-017-07032-y
  24. S. Bachche, M. Nonoguchi, K. Kato, M. Kageyama, T. Koike et al., Proc. of SPIE 9964, 99640 (2016).

Cited by

  1. Neutron grating interferometer with an analyzer grating based on a light blocker vol.28, pp.16, 2018, https://doi.org/10.1364/oe.391678
  2. Evaluation of Machine Learning Methods to Reduce Stripe Artifacts in the Phase Contrast Image due to Line-Integration Process vol.14, pp.7, 2018, https://doi.org/10.7742/jksr.2020.14.7.937