• Title/Summary/Keyword: using an analogy

Search Result 161, Processing Time 0.02 seconds

A New Quasi-Resonant M Link Inverter (새로운 Quasi-Resonant DC Link 인버터)

  • Lee, J.J.;Lee, J.W.;Park, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.328-331
    • /
    • 1990
  • A new quasi-resonant do link inverter is suggested, which can operate at the constant peak do link voltage irrespective of the magnitude of load current. The inverter is analyzed by using the topological analogy between the proposed inverter and the resonant DC/DC converter. Based on the analysis, an appropriate current controller is developed, which results in low current stress to the resonant capacitor and also enjoys the inherent capability of the current initialization of resonant inductor. For the purpose of confirming the inverter characteristics, some simulation results are presented.

  • PDF

A Study on the Metaphor Analysis Metrics of Visual Trope

  • Kwon, Gi-Myung;Lee, Jin-Ho;Jo, Jun;Hibino, Haruo
    • Archives of design research
    • /
    • v.20 no.2 s.70
    • /
    • pp.77-88
    • /
    • 2007
  • Visual trope is one of the important appealing methods of creativity to induce voluntary consumer participation. In many cases, it delivers a message using metaphors. To define the concepts of_metaphor, we investigated methods of expression and significance of metaphor itself and associated forms; in all: metaphor, analogy, catachresis, metonymy, and synecdoche. We also considered the structure of each form to propose a method of metricizing the metaphor Consequently, we found that the metaphor of a visual trope is a type of operation and development of codes. We suggested models for each form type and concept of metaphor through the evaluation of metaphor significance and case study. Metaphor significance forms mutually close relationships with codes of pragmatics, semantics, and syntax. We suggested a type of metrics or a guideline for an expression method and evaluation of a visual trope appropriate for a metaphor form type. Therefore and importantly, the following study presents unique, but manifold results that are also useful in the field of design.

  • PDF

An Investigation into Micro Valve Field and Flow Field Characteristic of 7mm Width (7mm폭의 Micro Valve 자장 및 유동특성 고찰)

  • Jeon, Y.S.;Kim, D.S.;Shin, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.657-658
    • /
    • 2006
  • Recently, the micro on-off valves have been focused on core technology in the fields of the production line of semi-conductor chips and the micro fluid chips for bio-medical applications. A key characteristics for micro valve, operated by compressed air, are high speed response and great repeatability. Indeed, it is also important to keep the pressure on the cross-sectional area of the poppet to be constant regardless of the fluctuation of the pressure exerted on the ports. In this study, we have designed and analysed the high-speed and high flow rate micro on-off valve using the analogy of equivalent magnetic circuit and Finite Element Method(FEM) respectively. In case of poppet, flow field characteristic was analyzed by the variation of poppet and it was able to display flow field by changing the location of the poppet. Also, we verified possibility of the design through the static and dynamic pressure and the 3D distribution curve of the force by working the front poppet.

  • PDF

Orthotropic Beam Analogy for Analysis of Shear Stresses in Framed-Tube Structures (구형등가보 원리에 의한 튜브 구조물의 전단응력 해석)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.393-400
    • /
    • 2001
  • A simple numerical modelling technique is proposed for estimating the shear stress distribution in beams of framed tube structures with multiple internal tubes. The structures are analysed using a continuum approach in which each tube is individually modelled by a tube beam that accounts for the flexural and shear deformations, as well as the shear lag effects. The method idealises the discrete tubes-in-tube structures as an assemblage of equivalent multiple beams, each composed of orthotropic plate panels. The numerical analysis of shear stress is based on the elastic theory in conjunction with the minimum potential energy principle. By simplifying assumptions regarding the form of strain distributions in external and internal tubes, the shear stress distributions are expressed in terms of a series of linear functions of the second moments of area of the structures and the corresponding geometric and material properties, as well as the applied loads. The simplicity and accuracy of the proposed method are demonstrated through the solutions of three numerical examples.

  • PDF

Additional Stresses in Flange Frame of Tube Structures under Lateral Loading (수평하중을 받는 튜브 구조물의 플랜지에 작용하는 부가 응력)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.317-322
    • /
    • 2001
  • A mathematical modelling technique is proposed for estimating the additional bending stresses of tube(s)-in-tube structures due to tube-tube interaction, which has a significant effects on the shear-lag phenomenon. The proposed method simulates the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. Hence, the tube(s)-in-tube structure can be analysed by using an analogy approach where each tube is individually modelled by a continuous beam that can account for the flexural and shear deformations as well as the shear-lag effects. The numerical analysis is applicable for the structural analysis of framed-tube structures with single and multiple internal tubes, as well as those without internal tubes. The shear-lag phenomenon of such structures is studied with additiona] bending stresses and shear-lag reversal points.

  • PDF

Computation of Unsteady Flows over an Oscillating airfoil (진동하는 익형을 지나는 비정상 유동에 관한 계산)

  • Yang C. M.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.125-130
    • /
    • 1999
  • A flowfields around a NACA0012 airfoil pitching about a 1/4 chord and plunging in vertical displacement are analyzed by solving two-dimensional compressible Navier-Stokes equations. A steady solution was solved first as a validation of the code used and the results were compared with experimental data. Then as a unsteady case, the oscillatory airfoil was solved to compare the results with experimental data. Oscillating rate of pitching and plunging motion was set to have analogy and the magnitude of plunging was set using the magnitude of pitching angle of attack. Finally combined pitching and plunging motion was solved to show the effect of 2 different types of oscillating motion of the airfoil.

  • PDF

Evaluation Factor related to Thinking Skills and Strategies based on Mathematical Thinking Process (수학적 사고 과정 관련의 평가 요소 탐색)

  • 황혜정
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.253-263
    • /
    • 2001
  • Developing mathematical thinking skills is one of the most important goals of school mathematics. In particular, recent performance based on assessment has focused on the teaching and learning environment in school, emphasizing student's self construction of their learning and its process. Because of this reason, people related to mathematics education including math teachers are taught to recognize the fact that the degree of students'acquisition of mathematical thinking skills and strategies(for example, inductive and deductive thinking, critical thinking, creative thinking) should be estimated formally in math class. However, due to the lack of an evaluation tool for estimating the degree of their thinking skills, efforts at evaluating student's degree of mathematics thinking skills and strategy acquisition failed. Therefore, in this paper, mathematical thinking was studied, and using the results of study as the fundamental basis, mathematical thinking process model was developed according to three types of mathematical thinking - fundamental thinking skill, developing thinking skill, and advanced thinking strategies. Finally, based on the model, evaluation factors related to essential thinking skills such as analogy, deductive thinking, generalization, creative thinking requested in the situation of solving mathematical problems were developed.

  • PDF

The Effects of Student-Centered Instruction Using Analogy for Middle School Students' Learning of the Photosynthesis Concept (학생 중심 비유 활용 수업이 중학생의 광합성 개념 이해에 미치는 영향)

  • Byun, Chun-Su;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.2
    • /
    • pp.304-322
    • /
    • 2010
  • The purpose of this study is to explore the effects of student-centered instruction using analogies for middle school students' learning of the photosynthesis concept. Participants in this study were 8th grade students at a middle school in Seoul (N=132). The students were divided into two groups for implementation. In the experimental group the teaching materials containing analogies were used while the contents of a science textbook were taught in the control group. The results of this study indicated that student-centered instruction using analogies was more effective than traditional methods of instruction for understanding photosynthesis concepts and the students' attitude toward the science class. Analogies were also found to contribute to developing an understanding of the photosynthesis concept through activating students' prior knowledge, focusing on structural features of the target concept and elaborating knowledge. In addition, analogies play an important role in activating small group discussions, improving students' meta-cognitive skills, and revealing and revising of misconceptions about photosynthesis. Moreover, analogies can help improve students' interests and self-efficiency in science classes.

Structural Optimization for Improvement of Thermal Conductivity of Woven Fabric Composites (열전도도 향상을 위한 직물섬유 복합재의 최적구조 설계)

  • Kim, Myungsoo;Sung, Dae Han;Park, Young-Bin;Park, Kiwon
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.26-34
    • /
    • 2017
  • This research presents studies on an improved method to predict the thermal conductivity of woven fabric composites, the effects of geometric structures of woven fabric composites on thermal conductivity, and structural optimization to improve the thermal conductivity using a genetic algorithm. The geometric structures of woven fabric composites were constructed numerically using the information generated on waviness, thickness, and width of fill and warp tows. Thermal conductivities of the composites were obtained using a thermal-electrical analogy. In the genetic algorithm, the chromosome string consisted of thickness and width of the fill and warp tows, and the objective function was the maximum thermal conductivity of woven fabric composites. The results confirmed that an improved method to predict the thermal conductivity was built successfully, and the inter-tow gap effect on the composite's thermal conductivity was analyzed suggesting that thermal conductivity of woven fabric composites was reduced as the gap between tows increased. For structural design, optimized structures for improving the thermal conductivity were analyzed and proposed. Generally, axial thermal conductivity of the fiber tow contributed more to thermal conductivity of woven fabric composites than transverse thermal conductivity of the tows.

Development of Hybrid Method for the Prediction of Internal Flow-induced Noise and Its Application to Throttle Valve Noise in an Automotive Engine

  • Cheong, Cheol-Ung;Kim, Sung-Tae;Kim, Jae-Heon;Lee, Soo-Gab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4E
    • /
    • pp.183-196
    • /
    • 2003
  • General algorithm is developed for the prediction of internal flow-induced noise. This algorithm is based on the integral formula derived by using the General Green Function, Lighthill's acoustic analogy and Curl's extension of Lighthill's. Novel approach of this algorithm is that the integral formula is so arranged as to predict frequency-domain acoustic signal at any location in a duct by using unsteady flow data in space and time, which can be provided by the Computational Fluid Dynamics Techniques. This semi-analytic model is applied to the prediction of internal aerodynamic noise from a throttle valve in an automotive engine. The predicted noise levels from the throttle valve are compared with actual measurements. This illustrative computation shows that the current method penn its generalized predictions of flow noise generated by bluff bodies and turbulence in flow ducts.