• Title/Summary/Keyword: user recognition

Search Result 1,357, Processing Time 0.025 seconds

Recognition of Human Typing Pattern Using Neural Network (신경망을 이용한 휴먼 타이핑 패턴 인식)

  • Bae, Jung-Gi;Kim, Byung-Whan;Lee, Sang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.449-451
    • /
    • 2006
  • With the increasing danger of personal information being exposed, a technique to protect personal information by identifying a non-user in case it is exposed. A study to construct a neural network recognizer for developing a economical and effective user protecting system. For this, time variables regarding user typing patterns from a pattern extraction device. With the variations in the standard deviation for the collected time variables, non-user patterns were generated. The recognition performance increased with the increase in the standard deviation and a higher recognition was achieved at 2.5. Also, five types of training data were generated and the recognition performance was examined as a function of the number of non-user patterns. With the increase in non-suer patterns, the recognition error quantified in the root mean square error (RMSE) was reduced. The smallest RMSE was obtained at the type 5 and 90 non-user patterns. In overall, the type 3 model yielded the highest recognition accuracy Particularly, a perfect recognition of 100% was achieved at 45 non-user patterns.

  • PDF

Ontology-based User Intention Recognition for Proactive Planning of Intelligent Robot Behavior (지능형로봇 행동의 능동적 계획수립을 위한 온톨로지 기반 사용자 의도인식)

  • Jeon, Ho-Cheol;Choi, Joong-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.86-99
    • /
    • 2011
  • Due to the uncertainty of intention recognition for behaviors of users, the intention is differently recognized according to the situation for the same behavior by the same user, the accuracy of user intention recognition by minimizing the uncertainty is able to be improved. This paper suggests a novel ontology-based method to recognize user intentions, and able to minimize the uncertainties that are the obstacles against the precise recognition of user intention. This approach creates ontology for user intention, makes a hierarchy and relationship among user intentions by using RuleML as well as Dynamic Bayesian Network, and improves the accuracy of user intention recognition by using the defined RuleML as well as the gathered sensor data such as temperature, humidity, vision, and auditory. To evaluate the performance of robot proactive planning mechanism, we developed a simulator, carried out some experiments to measure the accuracy of user intention recognition for all possible situations, and analyzed and detailed described the results. The result of our experiments represented relatively high level the accuracy of user intention recognition. On the other hand, the result of experiments tells us the fact that the actions including the uncertainty get in the way the precise user intention recognition.

MPEG-U-based Advanced User Interaction Interface Using Hand Posture Recognition

  • Han, Gukhee;Choi, Haechul
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.267-273
    • /
    • 2016
  • Hand posture recognition is an important technique to enable a natural and familiar interface in the human-computer interaction (HCI) field. This paper introduces a hand posture recognition method using a depth camera. Moreover, the hand posture recognition method is incorporated with the Moving Picture Experts Group Rich Media User Interface (MPEG-U) Advanced User Interaction (AUI) Interface (MPEG-U part 2), which can provide a natural interface on a variety of devices. The proposed method initially detects positions and lengths of all fingers opened, and then recognizes the hand posture from the pose of one or two hands, as well as the number of fingers folded when a user presents a gesture representing a pattern in the AUI data format specified in MPEG-U part 2. The AUI interface represents a user's hand posture in the compliant MPEG-U schema structure. Experimental results demonstrate the performance of the hand posture recognition system and verified that the AUI interface is compatible with the MPEG-U standard.

User Customizable Hit Action Recognition Method using Kinect (키넥트를 이용한 사용자 맞춤형 손동작 히트 인식 방법)

  • Choi, Yunyeon;Tang, Jiamei;Jang, Seungeun;Kim, Sangwook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.4
    • /
    • pp.557-564
    • /
    • 2015
  • There are many prior studies for more natural Human-Computer Interaction. Until now, the efforts is continued in order to recognize motions in various directions. In this paper, we suggest a user-specific recognition by hit detection method using Kinect camera and human proportion. This algorithm extracts the user-specific valid recognition rage after recognizing the user's body initially. And it corrects the difference in horizontal position between the user and Kinect, so that we can estimate a action of user by matching cursor to target using only one frame. Ensure that efficient hand recognition in the game to take advantage of this method of suggestion.

Development of User Music Recognition System For Online Music Management Service (온라인 음악 관리 서비스를 위한 사용자 음원 인식 시스템 개발)

  • Sung, Bo-Kyung;Ko, Il-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.91-99
    • /
    • 2010
  • Recently, recognizing user resource for personalized service has been needed in digital content service fields. Especially, to analyze user taste, recommend music and service music related information need recognition of user music file in case of online music service. Music related information service is offered through recognizing user music based on tag information. Recognition error has grown by weak points like changing and removing of tag information. Techniques of content based user music recognition with music signal itself are researched for solving upper problems. In this paper, we propose user music recognition on the internet by extracted feature from music signal. Features are extracted after suitable preprocessing for structure of content based user music recognition. Recognizing on music server consist of feature form are progressed with extracted feature. Through this, user music can be recognized independently of tag data. 600 music was collected and converted to each 5 music qualities for proving of proposed recognition. Converted 3000 experiment music on this method is used for recognition experiment on music server including 300,000 music. Average of recognition ratio was 85%. Weak points of tag based music recognition were overcome through proposed content based music recognition. Recognition performance of proposed method show a possibility that can be adapt to online music service in practice.

Development of Emotion Recognition Model based on Multi Layer Perceptron (MLP에 기반한 감정인식 모델 개발)

  • Lee Dong-Hoon;Sim Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.372-377
    • /
    • 2006
  • In this paper, we propose sensibility recognition model that recognize user's sensibility using brain waves. Method to acquire quantitative data of brain waves including priority living body data or sensitivity data to recognize user's sensitivity need and pattern recognition techniques to examine closely present user's sensitivity state through next acquired brain waves becomes problem that is important. In this paper, we used pattern recognition techniques to use Multi Layer Perceptron (MLP) that is pattern recognition techniques that recognize user's sensibility state through brain waves. We measures several subject's emotion brain waves in specification space for an experiment of sensibility recognition model's which propose in this paper and we made a emotion DB by the meaning data that made of concentration or stability by the brain waves measured. The model recognizes new user's sensibility by the user's brain waves after study by sensibility recognition model which propose in this paper to emotion DB. Finally, we estimates the performance of sensibility recognition model which used brain waves as that measure the change of recognition rate by the number of subjects and a number of hidden nodes.

A Survey on Deep Learning based Face Recognition for User Authentication (사용자 인증을 위한 딥러닝 기반 얼굴인식 기술 동향)

  • Mun, Hyung-Jin;Kim, Gea-Hee
    • Journal of Industrial Convergence
    • /
    • v.17 no.3
    • /
    • pp.23-29
    • /
    • 2019
  • Object recognition distinguish objects which are different from each other. But Face recognition distinguishes Identity of Faces with Similar Patterns. Feature extraction algorithm such as LBP, HOG, Gabor is being replaced with Deep Learning. As the technology that identify individual face with machine learning using Deep Learning Technology is developing, The Face Recognition Technology is being used in various field. In particular, the technology can provide individual and detailed service by being used in various offline environments requiring user identification, such as Smart Mirror. Face Recognition Technology can be developed as the technology that authenticate user easily by device like Smart Mirror and provide service authenticated user. In this paper, we present investigation about Face Recognition among various techniques for user authentication and analysis of Python source case of Face recognition and possibility of various service using Face Recognition Technology.

PC User Authentication using Hand Gesture Recognition and Challenge-Response

  • Shin, Sang-Min;Kim, Minsoo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.79-87
    • /
    • 2018
  • The current PC user authentication uses character password based on user's knowledge. However, this can easily be exploited by password cracking or key-logging programs. In addition, the use of a difficult password and the periodic change of the password make it easy for the user to mistake exposing the password around the PC because it is difficult for the user to remember the password. In order to overcome this, we propose user gesture recognition and challenge-response authentication. We apply user's hand gesture instead of character password. In the challenge-response method, authentication is performed in the form of responding to a quiz, rather than using the same password every time. To apply the hand gesture to challenge-response authentication, the gesture is recognized and symbolized to be used in the quiz response. So we show that this method can be applied to PC user authentication.

Improvement of Korean Sign Language Recognition System by User Adaptation (사용자 적응을 통한 한국 수화 인식 시스템의 개선)

  • Jung, Seong-Hoon;Park, Kwang-Hyun;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.301-303
    • /
    • 2007
  • This paper presents user adaptation methods to overcome limitations of a user-independent model and a user-dependent model in a Korean sign language recognition system. To adapt model parameters for unobserved states in hidden Markov models, we introduce new methods based on motion similarity and prediction from adaptation history so that we can achieve faster adaption and higher recognition rates comparing with previous methods.

  • PDF

User-customized Interaction using both Speech and Face Recognition (음성인식과 얼굴인식을 사용한 사용자 환경의 상호작용)

  • Kim, Sung-Ill;Oh, Se-Jin;Lee, Sang-Yong;Hwang, Seung-Gook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.397-400
    • /
    • 2007
  • In this paper, we discuss the user-customized interaction for intelligent home environments. The interactive system is based upon the integrated techniques using both speech and face recognition. For essential modules, the speech recognition and synthesis were basically used for a virtual interaction between user and proposed system. In experiments, particularly, the real-time speech recognizer based on the HM-Net(Hidden Markov Network) was incorporated into the integrated system. Besides, the face identification was adopted to customize home environments for a specific user. In evaluation, the results showed that the proposed system was easy to use for intelligent home environments, even though the performance of the speech recognizer did not show a satisfactory results owing to the noisy environments.

  • PDF