• Title/Summary/Keyword: used diesel vehicle

Search Result 140, Processing Time 0.026 seconds

Numerical Analysis for Reduction of Fuel Consumption by Improvement of Combustion Condition in a Common Rail Diesel Engine Generator (커먼레일 디젤엔진 발전기의 연소상태 개선에 따른 연비절감을 위한 수치해석)

  • Kim, Seung Chul;Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.58-64
    • /
    • 2016
  • The main engine of a vehicle is used an common rail diesel engine for improving the efficiency of the whole load area. However, the generator engines is still used mechanical fuel injection valve drive cams. In addition, most of generator engines is applied a part-load operation of less than 50%. Therefore, diesel engine of vehicle set at 100% load is necessary to readjust in order to perform efficient operation because of part-load operation. In this study, the objective is to report the results of the part-load fuel consumption improvement by injection timing readjust to identify the operational characteristics of a generator engine currently operated in the facilities.

The Fuel Characteristics of Diesel by Water Contamination (수분오염에 따른 경유의 연료적 특성)

  • Lim, Young-Kwan;Won, Ki-Yoe;Kang, Byung-Seok;Park, So-Hwi;Park, Jang-Min;Kang, Dea-Hyuk
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.385-390
    • /
    • 2020
  • It rains heavily, such as long rain and typhoons, during a typical rainy season in Korea. In this season, several fuel contamination accidents by water and vehicular problems caused by water contaminated fuel occur. Many research groups have studied the effects of water contaminated fuel on vehicles and environment. However the characteristics of water contaminated fuel have not been studied. In this study, we prepared diesel samples with a constant ratio of water (0~30 volume %) using an emulsifier. Then, we analyzed these diesel samples for their representative fuel properties. In the analytical results, diesel with 30% water showed an increase in fuel properties such as density (823→883 kg/㎥), kinematic viscosity (2.601→6.345 ㎟/s), flash point (47→56℃), pour point (-22→2℃), CFPP (cold filter plugging point) (-17→20℃) and copper corrosion number (1a→2a). The low temperature characteristics, such as low pour point and CFPP, blocks the fuel filter in the cold season. In addition, water contaminated diesel decreases lubricity (190→410 ㎛) under high frequency reciprocating rig (HFRR) and derived cetane number (54.81→34.25). The low lubricity of fuel causes vehicle problem such as pump and injector damage owing to severe friction. In addition, the low cetane diesel fuel increases exhaust gases such as NOx and particulate matters (PM) owing to incomplete combustion. This study can be used to identify the problems caused by water contamination to vehicle and fuel facilities.

Steady State Performance Analysis of Five-mode Hybrid Power Transmission Systems (5-모드 하이브리드 동력전달 시스템의 정상상태 성능분석)

  • Lim, Won-Sik;Kim, Nam-Woong;Choi, Wan-Mug;Park, Sung-Cheon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • The core of the automotive industry's strategy to handle the climate change can be explained as the development and distribution of the vehicles with high fuel efficiencies and low emission. Clean Diesel, hydrogen fuel cell, electric, and especially hybrid power-train vehicles have been actively studied. This paper dynamically analyzes the performance of a hybrid system's five driving modes. The research subject consists of one engine, two electric motors, two simple planetary gears, and one compound planetary gears with five clutches. To define the steady state equation of the system, interaction formulas of five driving modes are introduced with motion variables and torque variables. These formulas are then used to analyze the speeds, torques, and power flows of each mode.

A Study on Injector Durability Test with Diesel and BD20 Using Common Rail (커먼레일을 이용한 디젤과 BD20 연료가 인젝터에 미치는 영향에 관한 연구)

  • JEONG, YUNHO;LIM, OCKTAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.393-401
    • /
    • 2015
  • The characteristics of diesel and biodiesel are similar like as cetane number and auto-ignition temperature. High cetane number of diesel and BD could make possible to compression ignition. but BD showed different atomization from diesel due to component like density, viscosity and iodine value etc. Because of this, the biodiesel requires validation. This study using diesel and BD20 investigated effect to durability injector. Durability test were used common rail and bosch solenoid type 5-hole injector. Total test was 672hr but actual running time was 200hr. Spray experiments for spray characteristics were carried out using constant volume combustion chamber. Spray characteristics of diesel and BD showed different result up to durability test time. After 100hr, diesel showed spray shapes were stable but BD was not. After 200hr, difference of diesel and BD spray shapes were grow serious.

Are Flywheels Right for Rail?

  • Read, M.G.;Smith, R.A.;Pullen, K.R.
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.139-146
    • /
    • 2009
  • Vehicle braking in non-electrified rail systems wastes energy. Advanced flywheel technology presents a way to capture and reuse this braking energy to improve vehicle efficiency and so reduce the operating costs and environmental impact of diesel trains. This paper highlights the suitability of flywheels for rail vehicle applications, and proposes a novel mechanical transmission system to apply regenerative braking using a flywheel energy storage device. A computational model is used to illustrate the operation and potential benefits of the energy storage system.

  • PDF

Change in Physical Properties of Engine oil Contaminated with Diesel (경유 혼입에 의한 엔진오일 물성 변화)

  • Lim, Young-Kwan;Lee, Jong-Eun;Na, Yong-Gyu;Kim, Jong-Ryeol;Ha, Jong-Han
    • Tribology and Lubricants
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2017
  • Engine oil is a substance used for the lubrication of internal combustion systems. However, in some case, defects in engine systems may contaminate engine oil with fuel. Contaminated engine oil can cause problems in the normal functioning of a vehicle. In this study, we investigate the functional properties of engine oil contaminated with diesel fuel. The test results indicate that the engine oil contaminated with diesel fuel has low flash point, pour point, density, kinematic viscosity and cold cranking simulator value. The contaminated engine oil which has low plash point can cause fire and explosion accident. Furthermore, a four ball test indicates that the contaminated engine oil increases wear scar to poor lubricity. Moreover, we investigate the GC pattern using SIMDIST (simulated distillation) for determination of diesel in engine oil. The SIMDIST analytic result, diesel was detected at earlier retention time than engine oil in chromatogram. Thus the SIMDIST method can define whether engine oil is contaminated by diesel fuel or not. We can use the SIMDIST method for the diagnosis of oil condition instead of analyzing other physical properties that require many analytic instruments, large volume of oil sample and long analysis time.

A Study on Remanufacturing of Deactivated Commercial Diesel Oxidation Catalyst by CVS-75 mode in Light Duty Diesel Engine (비활성화된 상용 디젤 산화 촉매의 소형 디젤 기관에서 CVS-75 모드를 이용한 재제조에 관한 연구)

  • Lee, Chang-Hee;Park, Hea-Kyung
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2011
  • In this study, the used DOCs, which could remove the air pollutants such as CO and HC in the exhaust gas from diesel vehicle, were remanufactured by various conditions. Their catalytic performances and characterization were also investigated. The remanufacturing process of the deactivated DOCs includes high temperature cleaning of incineration, ultrasonic cleaning for washing with acid/base solutions to remove deactivating materials deposited to the surface of the catalysts, and active component reimpregnation for reactivating catalytic activity of them. The catalytic performance tests of the remanufactured DOCs were carried out by the diesel engine dynamo systems and chassi dynamo systems in CVS-75 mode. All prepared catalysts were characterized by the optical microscopes, SEM, EDX, porosimeter and BET to investigate correlations between catalytic reactivity and surface characteristics of them. The remanufactured DOCs at various conditions showed the improved catalytic performances reaching to 90% of fresh DOC, which is attributed to remove the deactivating materials from the surface of the used DOC through the analysis of catalytic performance test and their characterization.

A Study on Characteristics for Emission Characteristics and Durability with Biodiesel Fuel(20%) in a Commercial Common Rail Type Diesel Engine (상용 커먼레일 디젤기관에서 바이오디젤유(20%) 적용시 내구특성 및 배기배출물 특성 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with 20% biodiesel fuel(BDF 20) in excess of 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. The engine performance and exhaust emissions were sampled at 1 hour interval for analysis, Also, BSEC with BDF 20 resulted in lower than with diesel fuel. Since the biodiesel fuel used in this study includes oxygen of about 11%, it could influence the combustion process strongly. So, BDF 20 resulted in lower emissions of carbon monoxide, carbon dioxide, and smoke emissions without special increase of oxides of nitrogen than diesel fuel. It was concluded that there was no unusual deterioration of the engine, or any unusual change in exhaust emissions from using the BDF 20.

A Study on Characteristics of Exhaust Emissions from Domestic Used Diesel Engines (國産 디이젤機關의 汚染物質 排出特性에 關한 硏究)

  • 趙康來;金良均;董宗仁;嚴明道
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 1985
  • In odrder to survey the emission level of air pollutants from diesel vehicles, was measured CO, HC, NOx and smoke of 4 types of domestic-use diesel engines under various conditions. The emission of CO, HC and NOx tested by 6-Mode test method and smoke emission by full load test met the permissible vehicle emission standard. Pollutant emission rates of diesel engines were different according to engine operating conditions, that is, engine load and engine speed. Generally, CO and HC was emitted more at low load and NOx at high load but the trend was quite different by the type of engines. In exhaust gas, $NO_2$ portion of NOx emission was high, specially at low speed and low load. The correlation equation between CLD(NOx) and NDIR(NO) method of nitrogen of nitrogen oxides analysis was y = 1.10x - 3.48 (y: CLD method) as a result of 6-mode test.

  • PDF

Characteristics of Durability and Emission with Biodiesel Fuel (5%) in a Common Rail Direct Injection Diesel Engine at SEOUL-10 Mode (SEOUL-10 모드에서 바이오디젤유 (5%) 적용시 커먼레일 디젤기관의 배기배출물 및 내구 특성)

  • Choi, S.H.;Oh, Y.I.;Kim, G.H.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.2 s.121
    • /
    • pp.97-101
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 5% biodiesel blended fuel (BDF 5%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 2.6%), smoke (below 6.2%), NOx (below 2%) and durability characteristics in spite of operation of 150 hours run with BDF 5%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.36%