• Title/Summary/Keyword: use of visual representation

Search Result 96, Processing Time 0.032 seconds

The Analysis of 5th Graders' Visual Representation in Mathematical Problem Solving (수학 문제해결에서 초등학교 5학년 학생들의 시각적 표현 분석)

  • Lee, Daehyun
    • Journal of Science Education
    • /
    • v.45 no.2
    • /
    • pp.247-256
    • /
    • 2021
  • Visual representation has been a useful tool in mathematical problem solving because it vividly express and structure the variables in the problem. But its effects may vary according to the types of problems. So, this study analyzes the survey results on the 5th graders' visual representations using questionnaire consisting of the routine problems and the non-routine problems. The results are follows: The rate of correct answers in routine problems was higher than that of the non-routine problems. Even though the subjects were asked to solve the problem using visual representations, the ratio of solving the problem using the numerical expression was high in the routine problems. On the other hand, the rate of solving the problem using visual representation was high in the non-routine problems. The number of respondents who used visual representation in the non-routine problems was twice as many as that of the routine problems. But, among the subjects who used visual representation in the non-routine problems, the proportion of incorrect answers was also high, which resulted in using visual pictures. So, it is necessary to provide an experience that can use various types of the visual representations for problem solving and pay attention to the process of converting problems into visual representations.

Object Tracking with Sparse Representation based on HOG and LBP Features

  • Boragule, Abhijeet;Yeo, JungYeon;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.11 no.3
    • /
    • pp.47-53
    • /
    • 2015
  • Visual object tracking is a fundamental problem in the field of computer vision, as it needs a proper model to account for drastic appearance changes that are caused by shape, textural, and illumination variations. In this paper, we propose a feature-based visual-object-tracking method with a sparse representation. Generally, most appearance-based models use the gray-scale pixel values of the input image, but this might be insufficient for a description of the target object under a variety of conditions. To obtain the proper information regarding the target object, the following combination of features has been exploited as a corresponding representation: First, the features of the target templates are extracted by using the HOG (histogram of gradient) and LBPs (local binary patterns); secondly, a feature-based sparsity is attained by solving the minimization problems, whereby the target object is represented by the selection of the minimum reconstruction error. The strengths of both features are exploited to enhance the overall performance of the tracker; furthermore, the proposed method is integrated with the particle-filter framework and achieves a promising result in terms of challenging tracking videos.

Landscape Drawing as a Text: Practical and Theoretical Approach (텍스트로서의 조경드로잉 - 읽기의 틀과 실제 -)

  • 이광빈;조정송
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 1999
  • The Landscape drawing is used as main media in landscape design process like the language in daily life for human. Designers input many intentions and meaningful words in design process through landscape drawing. The common purpose of landscape drawing is to represent reality effectively, even though it has variable visual forms and materiality. The representation in landscape drawing in metaphorical as well as visual and functional. But current tendency is inclined to use landscape drawing in a functional aspect for visual representation and the landscape drawing is utilized straight-forwardly rather than metaphorically for clear communication. Such recognition on landscape drawing results from the difficulty to accept the symbolic aspect of the drawing. The difficulty makes the utilization and the interpretation of landscape drawing stay at conventional level in following visible factors. For the sake of solving the difficulty this study considers landscape drawing as the text that contains readable objects and symbolic words. This study presents layer-methods for reading a landscape drawing as a text; situational and contextural reading, iconological reading and reading the subject of drawing.

  • PDF

A Study on the Types of Design Problem Solving by Analogical Thinking - Focused on the Analysis of Associated Words and Sketch - (유추적 사고에 의한 디자인 문제해결의 유형 - 연상된 단어와 스케치 분석을 중심으로 -)

  • Choi, Eun-Hee;Choi, Yoon-Ah
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.2 s.61
    • /
    • pp.63-70
    • /
    • 2007
  • Analogy in problem solving is similarity-based reasoning facilitated by verbal and visual operation. This similarity-based reasoning generally supports initial phase of idea search. Therefore, this study intends to infer the types of problem solving by tracing the analogy use of verbal and visual representation through a experimental research. According to the result of this research, the types of problem solving by analogy are classified into 'evolving', 'divergent', and 'poor conversion' type. Firstly, 'evolving type' is distinguished between 'combination type' associated different contents to develope a new design and 'transformation type' associated similar words and sketches to be continuously revised and developed. In these types usually structural analogy rather than surface analogy is used. Secondly, in 'divergent type' associated words or sketches are individually represented, and among them one design solution is selected. In this type usually surface analogy is used. Thirdly, in 'poor conversion type' interaction between verbal representation and visual representation does not go on smoothly, and the generation of idea is poor. In here surface analogy is mostly used. These findings could form the basis of skill development of idea generation and conversion in design education.

Exploring Effects of a Visual Material Driven by Earth-Based Perspectives on the Spatial Representation of 5th Graders (지구 기반 관점의 시각 자료가 초등학교 5학년 학생들의 공간 표상에 미치는 영향 탐색)

  • Hyoung-Jin Kim;Seong-Hwan Jeong;Myeong-Kyeong Shin;Nan-Joo Kwon;Gyu-ho Lee
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.151-164
    • /
    • 2022
  • The 2015 revised science curriculum textbook of 6th graders describes 'day and night' as an astronomical phenomenon observed on a daily basis. Textbooks use only visual materials from a space-based perspective to explain the causes of day and night. This study aims to investigate what changes in spatial representations of 5th graders when additional visual materials of the Earth-based perspective were presented to them. It also shows that the Space and the Earth-based perspectives appear to be interconnected. The following are found in this study. First, when students were presented with a visual material of an Earth-based perspective, their spatial representations of both the Earth and the Space-based perspectives changed. Second, the visual material of an Earth-based perspective confirmed the possibility that students' spatial representation types could be different in many ways. Third, the effect on the spatial representation of each perspective is different depending on gender and the level of spatial representation.

A User-driven Visual Occlusion Method for Measuring the Visual Demand of In-Vehicle Information Systems (IVIS) (차내 정보 시스템의 시각적 요구 평가를 위한 사용자 주도의 시각 차폐 기법)

  • Park, Jung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.49-54
    • /
    • 2009
  • Visual occlusion method is a visual demand measuring technique which uses periodic vision/occlusion cycle to simulate driving environment. It became one of the most popular techniques for the evaluation of in-vehicle interfaces due to its robustness and cost-effectiveness. However, it has a limitation in that the vision/occlusion cycle forces the user to use the IVIS at a predetermined pace, while a driver decides when to use the device on his/her own in actual driving. This paper proposes a user-driven visual occlusion method for measuring the visual demand of in-vehicle interfaces. An experiment was conducted to examine the visual demand of an in-vehicle interface prototype using both the existing (system-driven) occlusion method and the proposed (user-driven) one. Two in-vehicle tasks were evaluated: address input and radio tuning. The results showed that, for the radio tuning task, there were significant differences in total shutter open time and resumability ratio between the methods. The user-driven visual occlusion method not only allows a better representation of drivers' behavior, but it also seems to provide more information on the chunkability of a task.

Structurally Enhanced Correlation Tracking

  • Parate, Mayur Rajaram;Bhurchandi, Kishor M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4929-4947
    • /
    • 2017
  • In visual object tracking, Correlation Filter-based Tracking (CFT) systems have arouse recently to be the most accurate and efficient methods. The CFT's circularly shifts the larger search window to find most likely position of the target. The need of larger search window to cover both background and object make an algorithm sensitive to the background and the target occlusions. Further, the use of fixed-sized windows for training makes them incapable to handle scale variations during tracking. To address these problems, we propose two layer target representation in which both global and local appearances of the target is considered. Multiple local patches in the local layer provide robustness to the background changes and the target occlusion. The target representation is enhanced by employing additional reversed RGB channels to prevent the loss of black objects in background during tracking. The final target position is obtained by the adaptive weighted average of confidence maps from global and local layers. Furthermore, the target scale variation in tracking is handled by the statistical model, which is governed by adaptive constraints to ensure reliability and accuracy in scale estimation. The proposed structural enhancement is tested on VTBv1.0 benchmark for its accuracy and robustness.

The Effects of Mathematical Problem Solving depending on Analogical Conditions (유추 조건에 따른 수학적 문제 해결 효과)

  • Ban, Eun-Seob;Shin, Jae-Hong
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.3
    • /
    • pp.535-563
    • /
    • 2012
  • This study was conducted to confirm the necessity of analogical thinking and to empirically verify the effectiveness of analogical reasoning through the visual representation by analyzing the factors of problem solving depending on analogical conditions. Four conditions (a visual representation mapping condition, a conceptual mapping condition, a retrieval hint condition and no hint condition) were set up for the above purpose and 80 twelfth-grade students from C high-School in Cheong-Ju, Chung-Buk participated in the present study as subjects. They solved the same mathematical problem about sequence of complex numbers in their differed process requirements for analogical transfer. The problem solving rates for each condition were analyzed by Chi-square analysis using SPSS 12.0 program. The results of this study indicate that retrieval of base knowledge is restricted when participants do not use analogy intentionally in problem solving and the mapping of the base and target concepts through the visual representation would be closely related to successful analogical transfer. As the results of this study offer, analogical thinking is necessary while solving mathematical problems and it supports empirically the conclusion that recognition of the relational similarity between base and target concepts by the aid of visual representation is closely associated with successful problem solving.

  • PDF

The change of mathematical representations and behavioral characteristics in the class using manipulative materials - Focused on teaching regular polytopes - (교구를 활용한 수업에서의 수학적 표현과 행동 특성의 변화 - 정다면체 지도를 중심으로 -)

  • Choi, Jeong-Seon;Park, Hye-Sook
    • The Mathematical Education
    • /
    • v.48 no.3
    • /
    • pp.303-328
    • /
    • 2009
  • In this study, we developed the teaching methods using manipulative materials to teach regular polytopes, and applied these to first-year student of middle school who is attending the extra math class. In that class, we focused on the change of the mathematical representations -especially verval, visual and symbolic representations- and mathematical behavioral. By analyzing characterstics the students' work sheets, we obtained affirmative results as follows. First, manipulative materials played an important role on drawing a development figure of regular polyhtopes describing the verval representation definition of regular polytopes. Second, classes utilizing manipulative materials changed students verbalism level of representations the definition of regular polytopes. For example, in the first class about 60% of students are in the $0{\sim}2$ vervalism level, but in the third class, about 65% of students are in the $6{\sim}7$ level. Third, classes utilizing manipulative materials improved visual representation about development figure. After experiences making several development figures about regular octahedron directly, and discussion, students found out key points to be considered for draws development figure and this helped to draw development figures about other regular polytopes. Fourth, students were unaccustomed to make symbolic representations of regular polytopes. But, they obtained same improvement in symbolic representations, so in fifth the class some students try to make symbol about something in common of whole regular polytopes. Fifth, after the classes, we have significant differences in the students, especially behavioral characteristics in II items such as mind that want to study own fitness, interest, attachment, spirit of inquiry, continuously mathematics posthumously. This means that classes using manipulative materials. Specially, 'mind that want to study mathematics continuously' showed the biggest difference, and it may give positive influence to inculcates mathematics studying volition while suitable practical use of manipulative materials. To conclude, classes using manipulative materials may help students enhance the verbal, visual representation, and gestates symbol representation. Also, the class using manipulative materials may give positive influence in some part of mathematical behavioral characteristic. Therefore, if we use manipulative materials properly in the class, we have more positive effects on the students cognitive perspect and behavioral cteristics.

  • PDF

Accurate Representation of Light-intensity Information by the Neural Activities of Independently Firing Retinal Ganglion Cells

  • Ryu, Sang-Baek;Ye, Jang-Hee;Kim, Chi-Hyun;Goo, Yong-Sook;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.221-227
    • /
    • 2009
  • For successful restoration of visual function by a visual neural prosthesis such as retinal implant, electrical stimulation should evoke neural responses so that the informat.ion on visual input is properly represented. A stimulation strategy, which means a method for generating stimulation waveforms based on visual input, should be developed for this purpose. We proposed to use the decoding of visual input from retinal ganglion cell (RGC) responses for the evaluation of stimulus encoding strategy. This is based on the assumption that reliable encoding of visual information in RGC responses is required to enable successful visual perception. The main purpose of this study was to determine the influence of inter-dependence among stimulated RGCs activities on decoding accuracy. Light intensity variations were decoded from multiunit RGC spike trains using an optimal linear filter. More accurate decoding was possible when different types of RGCs were used together as input. Decoding accuracy was enhanced with independently firing RGCs compared to synchronously firing RGCs. This implies that stimulation of independently-firing RGCs and RGCs of different types may be beneficial for visual function restoration by retinal prosthesis.