• Title/Summary/Keyword: upwind flow

Search Result 249, Processing Time 0.024 seconds

A Simple Theoretical Model for the Upwind Flow in the Southern Yellow Sea (황해남부의 역풍류에 대한 단순 이론 모델)

  • 박용향
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.203-210
    • /
    • 1986
  • A linear parallel transport model is formulated and applied to an idealized Yellow Sea, With this simple analytical model, the hither-to suspected upwind flow phenomena in the southern Yellow Sea can be reasonably explained. In deep waters where the local depth exceeds a critical depth (Hc=53m in the present model sea), pressure gradient force dominates over wind stress and contributes to an upwind flow. The estimated upwind flow velocity increases with wind speed and a maximum upwind flow occurs along the axis of the Yellow Sea embayment. For the typical south wind of 5-10 knots in summer, the upwind (southward) flow velocity along the axis of the Yellow Sea is estimated to be 1-5cm s$\^$-1/. While, for the typical north wind of 10-15 knots in winter, the upwind (northward) flow velocity is 5-12cm s$\^$-1/. These velocity ranges can be served as rough estimates for the intrusion velocity of the Yellow Sea Bottom Cold Water in summer and the Yellow Sea Warm Current in winter, respectively.

  • PDF

New Treatment of Source Terms in Upwind Schemes (상류이송기법에서의 새로운 생성항 처리 기법)

  • Kim, Won;Han, Kun-Yeun;Woo, Hyo-Seop;Choi, Kyu-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.155-166
    • /
    • 2005
  • Upwind schemes are very well adapted to the discontinuous flow and have become popular for applications Involving dam break flow, transcritical Slow, etc. However, upwind schemes have been applied mainly to the idealized problems not to the natural channels with irregular geometry so far because of the error due to source terms. In this paper, the new type of upwind discretization of source terms, which uses the normalized Jacobian to discretize the source terms, is proposed. As results of tests to flows with source terms by the upwind models, the method proposed in this paper is proved as efficient and accurate. This generalized method for differencing source terms is simple and might beapplicable to diverse type of flux upwind discretization scheme in finite difference method.

Numerical Analysis of Nonequilibrium Chemically Reacting Inviscid flow over Blunt-bodies Using Upwind Method (Upwind 방법을 이용한 무딘물체 주위의 화학적 비평형 비점성 유동장의 수치 해석)

  • Seo Jeong Il;Song Dong Joo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.99-105
    • /
    • 1997
  • A finite-difference method based on conservative supra characteristic method type upwind flux difference splitting has been developed to study the nonequilibrium chemically reacting inviscid flow. For nonequilibrium air, NS-1 species equations were strongly coupled with flowfield equations through convection and species production terms. Inviscid nonequilibrium chemically reacting air mixture flows over Blunt-body were solved to demonstrate the capability of the current method. At low altitude flight conditions the nonequilibrium air models predicted almost the same temperature, density and pressure behind the shock as equilibrium flow: however, at high altitudes they showed substantial differences due to nonequilibrium chemistry effect. The new nonequilibrium chemically reacting upwind flux difference splitting mettled can be extended to viscous flow and multi-dimensional flow conditions.

  • PDF

Effects of Spatial Discretization Schemes on Numerical Solutions of Viscoelastic Fluid Flows (공간차분도식이 점탄성 유체유동의 수치해에 미치는 영향)

  • Min, Tae-Gee;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1227-1238
    • /
    • 2000
  • This study examines the effects of the discretization schemes on numerical solutions of viscoelastic fluid flows. For this purpose, a temporally evolving mixing layer, a two-dimensional vortex pair interacting with a wall, and a turbulent channel flow are selected as the test cases. We adopt a fourth-order compact scheme (COM4) for polymeric stress derivatives in the momentum equations. For convective derivatives in the constitutive equations, the first-order upwind difference scheme (UD) and artificial diffusion scheme (AD), which are commonly used in the literature, show most stable and smooth solutions even for highly extensional flows. However, the stress fields are smeared too much and the flow fields are quite different from those obtained by higher-order upwind difference schemes for the same flow parameters. Among higher-order upwind difference schemes, a third-order compact upwind difference scheme (CUD3) shows most stable and accurate solutions. Therefore, a combination of CUD3 for the convective derivatives in the constitutive equations and COM4 for the polymeric stress derivatives in the momentum equations is recommended to be used for numerical simulation of highly extensional flows.

On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction (황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향)

  • Lee, Jong-Chan;Kim, Chang-Shik;Jung, Kyung-Tae;Jun, Ki-Cheon
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

An Investigation of Flow and Pollutant Dispersion in Three-Dimensional Asymmetric Street Canyons Using a CFD Model (CFD 모형을 이용한 3차원 비대칭 도로 협곡에서의 흐름 및 오염물질 분산 연구)

  • Park, Seung-Bu;Baik, Jong-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.214-224
    • /
    • 2007
  • A three-dimensional computational fluid dynamics (CFD) model with the renormalization group (RNG) $k-{\varepsilon}$ turbulence model is used to examine the effects of difference in building height on flow and pollutant dispersion in asymmetric street canyons. Three numerical experiments with different street canyons formed by two isolated buildings are performed. In the experiment with equal building height, a portal vortex is formed in the street canyon and a typical recirculation zone is formed behind the downwind building. In the experiment with the downwind building being higher than the upwind building, the ambient flow comes into the street canyon at the front of the downwind building and incoming flow diverges strongly in the street canyon. Hence, pollutants released therein are strongly dispersed through the lateral sides of the street canyon. In the experiment with the upwind building being higher than the downwind building, a large recirculation zone is formed behind the upwind building, which is disturbed by the downwind building. Pollutants are weakly dispersed from the street canyon and the residue concentration ratio is largest among the three experiments. This study shows that the difference in upwind and downwind building height significantly influences flow and pollutant dispersion in and around the street canyon.

Development of the Upwind McCormack Scheme (상류이송형 McCormack 기법의 개발)

  • Kim, Won;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.9 s.158
    • /
    • pp.727-736
    • /
    • 2005
  • In this study, the upwind McCormack scheme is introduced to combine the advantage of McCormack scheme, the second order accuracy and simplicity, and the advantage of the upwind scheme, to be applied to the discontinuous flows. This scheme also has another advantage of treating the source terms effectively. This model is approved through applying to the discontinuous flow case with the analytical solution, and the natural river with very strong source terms. Applications of the upwind McCormack scheme developed in this paper show good agreements with the analytical solution without numerical oscillation in existing McCormack scheme. Futhermore, applications to the natural river, the lower Han river with strong variation of bed and width, also show good results in case of both steady flow and unsteady flow. The upwind McCormack scheme in this study will be used for the analysis of flow in natural rivers effectively.

A Numerical Study on the Wintertime Upwind flow of the Yellow Sen in an Idealized Basin

  • Kyung, Tae-Jung;Park, Chang-Wook;Oh, Im-Sang;Lee, Ho-Jin;Kang, Hyoun-Woo
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.91-107
    • /
    • 2002
  • The wintertime upwind flow in the Yellow Sea has been investigated through a series of two-dimensional numerical experiments in an idealized basin. A total of 10 experiments have been carried out to examine the effects of wind forcing, bottom friction and the presence of oceanic currents sweeping the shelf of the East China Sea. A spatially uniform steady and periodic wind stresses are considered along with comparison of linear and quadratic formulations. The wind-driven flow in the absence of oceanic current has been computed using Proudman open boundary condition (POBC), while the wind-driven current in the presence of oceanic current has been computed using Flather’s radiation condition (FOBC). The oceanic currents to be prescribed at the open boundary have been simulated by specifying uniform sea level gradients across the Taiwan Strait and the eastern ECS shelf, Calculations show that, as seen in Lee et al. (2000), oceanic flow little penetrates into the Yellow Sea in the absence of wind forcing unless a unrealistically low rate of bottom frictional dissipation is assumed. Both steady and time-periodic wind stresses invoke the upwind flow along the central trough of the Yellow Sea, independently of the presence of the oceanic current. The presence of oceanic currents very marginally alters the north-south gradient of the sea surface elevation in the Yellow Sea. Changes in the intensity and direction of the wind-induced mean upwind flow are hardly noticeable in the Yellow Sea but are found to be significant near Cheju Island where the gradient is reduced and therewith contribution of Ekman transport increases. In case of steady wind forcing circulation patterns such as two gyres on the slope sides, a cyclonic gyre on the western slope and an anticyclonic gyre on the eastern slope persist and the upwind flow composes part of the cyclonic gyre in the Yellow Sea. While in case of the time-periodic wind stress the appearance and disappearance of the patterns are repeated according to the time variation of the wind stress and the upwind flow accordingly varies with phase delay, mostly intensifying near the time when the wind forcing is approximately near the middle of the decaying stage.

NUMERICAL MODELING OF NON-CAPACITY MODEL FOR SEDIMENT TRANSPORT BY CENTRAL UPWIND SCHEME

  • S. JELTI;A. CHARHABIL;J. EL GHORDAF
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.181-192
    • /
    • 2023
  • This work deals with the numerical modeling of dam-break flow over erodible bed. The mathematical model consists of the shallow water equations, the transport diffusion and the bed morphology change equations. The system is solved by central upwind scheme. The obtained results of the resolution of dam-beak problem is presented in order to show the performance of the numerical scheme. Also a comparison of central upwind and Roe schemes is presented.

TWO-DIMENSIONAL CAVITATION PREDICTION BASED ON APPROXIMATE JACOBIAN MATRIX IN TWO-FLUID TWO-PHASE FLOW MODELS (2-유체 2상-유동 모델에서 근사 Jacobian 행렬을 이용한 2차원 캐비테이션의 예측)

  • Yeom Geum-Su;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.183-186
    • /
    • 2005
  • We developed an upwind numerical formulation based on the eigenvalues of the approximate Jacobian matrix in order to solve the hyperbolic conservation laws governing the two-fluid two-phase flow models. We obtained eight analytic eigenvalues in the two dimensions that can be used for estimate of the wave speeds essential in constructing an upwind numerical method. Two-dimensional underwater cavitation in a flow past structural shapes or by underwater explosion can be solved using this method. We present quantitative prediction of cavitation for the water tunnel wall and airfoils that has both experimental data as well as numerical results by other numerical methods and models.

  • PDF