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NUMERICAL MODELING OF NON-CAPACITY MODEL FOR

SEDIMENT TRANSPORT BY CENTRAL UPWIND SCHEME
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Abstract. This work deals with the numerical modeling of dam-break
flow over erodible bed. The mathematical model consists of the shallow

water equations, the transport diffusion and the bed morphology change

equations. The system is solved by central upwind scheme. The obtained
results of the resolution of dam-beak problem is presented in order to show

the performance of the numerical scheme. Also a comparison of central

upwind and Roe schemes is presented.
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1. Introduction

Numerical modeling of alluvial rivers is getting attention these last years,
specially dam-break flows and problems of sediment transports. Mainly, for
their impact on land use planning and other economic and security reasons.

The majority of the first mathematical models modelizing dam-break problem
considered a fixed bottom see [6] [8] and [26] among others. A few years later and
based on many researchers, the coupled model saw birth in [5]. The mathemat-
ical model consists of four equations; the mass and the momentum conservation
equation for the water-sediment mixture, the transport diffusion equation for
sediment particles and bed morphology change equation, complemented by the
empirical formulations for bed friction and sediment exchange between the water
column and the bed [24]. The coupled model interlink between flow, sediment
transport and morphological evolution, in which entrainment and deposition
of sediments are treated as independent processes this property is called non-
capacity model [2] and [24]. Since there, this mathematical model is used by
many researchers see among others [2], [10], [12], [27], [25], [22] and [11].
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Central-upwind schemes were introduced at first in [13, 14, 15] for one di-
mensional hyperbolic systems of conservation laws and its multidimensional ex-
tensions. The central-upwind schemes belong Godunov central schemes family,
therefore they enjoy the main advantages of central schemes for solving time-
dependent differential equations in different fields like robustness, simplicity and
high-resolution. At the same time, in central upwind a more careful estimate
of the one-sided local speeds of propagation and integration over Riemann fans
with variable sizes is used (see [17], for instance). This decreases the numer-
ical dissipation and results in increased resolution of the computed solution.
Central-upwind schemes have been proposed for general hyperbolic system of
conversation law in [17, 18] and extended to the shallow water equations and
related models in [15], [16] and [19].

The governing equations are solved numerically using central upwind scheme.
The main contribution is to propose a discretisization of the source term which
agree with the central upwind scheme and compare it with Roe scheme presented
in [10]. The MUSCL method with generalized minmod limiter and the Runge-
Kutta are used to achieve a second order accuracy. We focus in this work on the
evolution of dam-break flow, sediment transport and bed morphological devel-
opment. Many comparisons are reported in order to enhance the performance
of central upwind scheme: the numerical scheme in use is compared vis-a-vis
previous evolutionary behaviors of dam-break over erodible bed addressed in [3],
[7] and [2], and vis-a-vis Roe scheme with a new discretization of the source term
developed in [10].

This work is organized as follows. Section 2 presents the governing equations
for a dam-break over erodible sediment bed. In Section 3 the central upwind
scheme is formulated and discretized. Section 4 covers the resolution of dam-
break problem. Finally concluding remarks are given in Section 5.

2. The mathematical model

This work consists of on one-dimensional flow in a channel with rectangular
cross section of constant width, over an erodible bed composed of uniform and
noncohesive sediment particles. This mathematical model can be extendable to
natural rivers with complex geometries, nonuniform sediments and multidimen-
sional problems. The governing equations are subject of four equations: the mass
and the momentum conservation equations for the water-sediment mixture, the
mass conservation equation for the sediment and the mass conservation equation
for the bed material are written as [1], [2], [10], [23] and [24]:

∂h

∂t
+

∂(hu)

∂x
=

E −D

1− p
(1)

∂(hu)

∂t
+

∂(hu2 + 1
2gh

2)

∂x
= B (2)

∂(hc)

∂t
+

∂(huc)

∂x
= E −D (3)
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∂z

∂t
= −E −D

1− p
(4)

where B is the source term defined by :

B = −gh
∂z

∂x
− ρs − ρw

2ρ
gh2 ∂c

∂x
− ghSf − ρ0 − ρ

ρ

E −D

1− p
u (5)

t is the time, x the streamwise coordinate, h the flow depth, u the depth-averaged
streamwise velocity, z the bed elevation, c the flux-averaged volumetric sediment
concentration, g the gravitational acceleration, p the bed sediment porosity. D
and E are the sediment deposition and entrainment fluxes across the bottom
boundary of flow, they represent the exchange between water column and bed.
Sf is the friction slope, ρ = ρw(1−c)+ρsc is the density of water-sediment mix-
ture,
ρ0 = ρwp + ρs(1 − p) is the density of the saturated bed, ρw and ρs are the
densities of water and sediment, respectively.

To avoid repetition, we refer the reader to [10] for extra detail concerning
empirical functions.

3. Central-upwind scheme

It is well known that Godunov-type central schemes are Riemann-problem-
solver-free and are robust, simple and high-resolution methods for solving time-
dependent differential equations in different fields. The central-upwind schemes
belong Godunov central schemes family, where a more careful estimate of the
one-sided local speeds of propagation and integration over Riemann fans with
variable sizes is used. This decreases the numerical dissipation and results
in increased resolution of the computed solution. Another advantage of these
schemes, as opposed to the earlier developed staggered central schemes, is that
they can be used for steady state computations. Central-upwind schemes have
been proposed for general hyperbolic system of conversation law in [17, 18] and
extended to the shallow water equations and related models in [15], [16] and [19].

Equations (1-4) can be arranged in the conservative form:

∂U

∂t
+

∂F (U)

∂x
= S +Q (6)

or non-conservative form:

∂U

∂t
+A(U)

∂U

∂x
= Q (7)

where

U =


h

hu
hc
z

 , F =


hu

hu2 + 1
2gh

2

huc
0

 , S =


0

−gh ∂z
∂x − (ρs−ρw)

2ρ gh2 ∂c
∂x

0
0

 ,

(8)
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Q =


E−D
1−p

−ghSf − ρ0−ρ
ρ

E−D
1−p u

E −D

−E−D
1−p

 (9)

the matrix A(U) is given by

A(U) =


0 1 0 0

gh− u2 − ρs−ρw

2ρ ghc 2u ρs−ρw

2ρ gh gh

−uc c u 0
0 0 0 0

 (10)

A(U) has the four following distinct real eigenvalues

λ1 = 0, λ2 = u, λ3 = u−
√
gh, and λ4 = u+

√
gh (11)

The spatial domain is discretisized into finite volume cells Ci = [xi− 1
2
, xi+ 1

2
] with

the same length ∆x. The time interval is divided into subintervals [tn, tn+1] with
uniform size ∆t. We suppose that at certain time t, the solution is given in terms
of its cell averages Ui =

1
∆x

∫
Ci
U(x, t)dx, which are given in time according to

the semi-discrete central-upwind scheme, see for instance [14, 15] as follows

∂Ui

∂t
= −

Hi+ 1
2
(t)−Hi− 1

2
(t)

∆x
+ Si(t) +Qi(t), (12)

where Si(t) and Qi(t) are respectively the cell average of S(t) and Q(t) on Ci at
the time t. The central-upwind numerical flux Hi+ 1

2
(t) are given by

Hi+ 1
2
(t) =

a+
i+ 1

2

F−
i+ 1

2

(t)− a−
i+ 1

2

F+
i+ 1

2

(t)

a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

(U+
i+ 1

2

(t)−U−
i+ 1

2

(t)). (13)

due to the hyperbolicity of the system of differential equations 7, the discontinu-
ities appearing at the reconstruction step at the interface points xi+1/2 propagate
at finite speeds estimated by

a+
i+ 1

2

= max
(
0, u+

i+ 1
2

+
√
gh+

i+ 1
2

, u−
i+ 1

2

+
√

gh−
i+ 1

2

)
(14)

a−
i+ 1

2

= min
(
0, u+

i+ 1
2

−
√
gh+

i+ 1
2

, u−
i+ 1

2

−
√

gh−
i+ 1

2

)
(15)

3.1. Second order approximation in space. When U−
i+ 1

2

and U+
i+ 1

2

are ap-

proximated by Ui and Ui+1 respectively, the semi-discrete central-upwind scheme
is only first-order accurate in space. However, if we take them as the right and
the left point values of the piecewise linear reconstruction on the cell Ci, the
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scheme is second order in space. In our study, we adopt the linear reconstruc-
tion given by [4] and then for each i we put

Ūi(x) = Ui +

(
∂U

∂x

)
i

(x− xi), ∀x ∈ [xi− 1
2
, xi+ 1

2
] (16)

U+
i+ 1

2

and U−
i+ 1

2

are the right and left point values of the piecewise linear recon-

struction at x = xi+ 1
2
, then

Ui+ 1
2 ,L

= Ui +
∆x

2

(
∂U

∂x

)
i

(17)

Ui+ 1
2 ,R

= Ui+1 −
∆x

2

(
∂U

∂x

)
i+1

(18)

The numerical derivatives (Ux)i are to be computed using a nonlinear limiter. In
this paper the generalized minmod limiter in order to warrant the second order
accuracy and a non-oscillatory nature of the reconstruction is used :(

∂U

∂x

)
i

= minmod

(
θ
Ui+1 − Ui

∆x
; θ

Ui − Ui−1

∆x
;
Ui+1 − Ui−1

2∆x

)
(19)

where the minmod function is defined by:

minmod(α1, α2, α3) =

 min(α1, α2, α3) if αi > 0, ∀i
max(α1, α2, α3) if αi < 0, ∀i
0 otherwise

(20)

The central-upwind framework allows one to decrease a relatively large amount
of numerical dissipation present at the staggered central schemes. In [16], the au-
thors present a modification of the one-dimensional semi-discrete central-upwind
scheme, in which the numerical dissipation is more reduced. In this case the
central-upwind numerical flux Hi+ 1

2
(t) are given by

Hi+ 1
2
(t) =

a+
i+ 1

2

F−
i+ 1

2

(t)− a−
i+ 1

2

F+
i+ 1

2

(t)

a+
i+ 1

2

− a−
i+ 1

2

+
a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

(U+
i+ 1

2

(t)−U−
i+ 1

2

(t))−di+ 1
2
,

(21)
where di+ 1

2
is called the correction term or built-in anti-diffusion term and is

defined by

di+ 1
2
=

a+
i+ 1

2

a−
i+ 1

2

a+
i+ 1

2

− a−
i+ 1

2

minmod
(
U+
i+ 1

2

(t)− U∗
i+ 1

2
(t), U∗

i+ 1
2
(t)− U−

i+ 1
2

(t)
)
. (22)

The intermediate value U∗
i+ 1

2

(t) is given by

U∗
i+ 1

2
(t) =

a+
i+ 1

2

U+
i+ 1

2

(t)− a−
i+ 1

2

U−
i+ 1

2

(t)− (F+
i+ 1

2

(t)− F−
i+ 1

2

(t))

a+
i+ 1

2

− a−
i+ 1

2

. (23)
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3.2. Second order approximation in time. To reach second order approx-
imation in time, we rewrite relation (12) as:

∂Ui

∂t
= L(Ui) (24)

then we use the Runge-Kutta second order scheme [9] and [20]: U∗ = Un +∆t L(Un)
U∗∗ = U∗ +∆t L(U∗)
Un+1 = 1

2 (U
n + U∗∗)

(25)

3.3. Discretization of the source term. We propose the following decom-
position and discretization of the source terms given in Equation (6) by

Sn
i =


0

−g
z
i+1

2
,R

−z
i− 1

2
,R

∆x hi − (ρs−ρw)
2ρ gh2

i

c
i+1

2
,R

−c
i− 1

2
,R

∆x

0
0

 (26)

Qn
i =


E−D
1−p

−ghiSf − (ρ0−ρ)
ρ

(E−D)
(1−p) ui

E −D
−E−D

1−p

 (27)

4. Numerical results

In this section, we solve numerically the coupled model (Equations 1-2-3-4)
applying on the dam-break over mobile bed problem by the second order central-
upwind-Runge-Kutta scheme (see Section 3) with the diffusion correction term.
Attention is given to the behavior of the dam-break flow over a mobile bed.
The channel length is 50, 000m, the dam is initially located at the middle of the
channel x = 25, 000m, the test is largely used in the literature [1], [23], [2] and
[10]. The initial conditions are:

h(x) =

{
40m, x ≤ 25, 000m

2m, x > 25, 000m
, u(0, x) = 0m/s, c(0, x) = 0.001 (28)

Initially, the channel bed is considered horizontal and composed of noncohesive
uniform sediments. Step size space is ∆x = 10m and ∆t is computed according
to a specified value of CFL number equal to 0.85.

4.1. Dam-break problem by central upwind scheme. In order to show
the effect of sediment size on the behavior of the flow, we resolve the dam-break
problem described earlier using different diameters by central upwind scheme.
Figures 3 and 4 present the evolution of water free surface, bed, concentration
and velocity profiles. Several observations can be made:
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Figure 1. Water free surface, bed, and concentration profiles
at several times (from top to bottom t = 1min, t = 2min, 14min
and 20min) using d = 2mm.
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Figure 2. Velocity profiles at several times using d = 2mm.

• We can observe a hydraulic jump located in the initial position of the
dam, then the jump gradually decreases and disappears as it propagates
upstream. This is in agreement with observations reported in [3] and
[21].

• The bed deformation is significant comparing of that of water free sur-
face.

• The concentration profiles increase progressively in parallel with the
changes brought on the erodible bottom.

• Sediment size has a great effect on dam-break flow:
– The hydraulic jump is more pronounced when the sediment size is

greater;
– Bed rate change is more significant when sediment size is smaller;
– Concentration profiles reach higher level when also sediment size is

smaller;
– Higher velocities back to greater sediments.

Theses remarks are in agreement with those reported in [1], [23], [2] and [10]

4.2. Central upwind versus Roe scheme. In order to enhance the perfor-
mance of central upwind, we compare it with Roe scheme with the new dis-
cretization satisfing the C-property presented in [10]. Figures 3 and 4 present
the evolution of water free surface, bed, concentration and velocity profiles.
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Figure 3. Water free surface, bed, and concentration profiles
of central upwind versus Roe scheme at several times (from
top to bottom t = 1min, t = 2min, 14min and 20min) using
d = 2mm.
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Roe scheme with the new discretiztion proposed by [10] has demonstrated
a great performance and robustness based on performance and conservation
verification tests. We remark Figures 3 and 4 that the profiles provided by
central upwind coincide with those provided by Roe scheme. Therefore, central
upwind has shown a great level of performance and robustness.
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Figure 4. Velocity profiles at several times using d = 8mm.

5. Conclusion

In this study, dam-break problem with sediment transport is resolved using
central upwind scheme. Through the obtained results, the numerical scheme
detected the bed rate change and changes on velocity, concentration and free
water-surface profiles. Also, central upwind scheme is compared to Roe scheme
with the new discretization of the source term which satisfies the C-property in-
troduced by [10], and the results were very satisfying. Therefore, central upwind
scheme has shown a great level of performance and robustness. Subsequently,
central upwind scheme can be a very good approximation tool to solve the shal-
low water equations coupled with the sediment transport equations.
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