• Title/Summary/Keyword: uptake rate

Search Result 1,066, Processing Time 0.023 seconds

Influence of Chilling Duration on Oxygen Consumption and Hatchability in Eggs of the Silkworm, Bombyx mori

  • Yoon, Hyung-Joo;Kim, Sam-Eun;Kim, Jong-Gill;Park, Ji-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.1
    • /
    • pp.73-76
    • /
    • 2004
  • The rate of oxygen consumption of the silkworm eggs was measured to set up the barometer for measuring the effect of egg chilling on diapause termination. In diapause eggs, $O_2$ uptake showed a maximum of 79.2 ${mu}ell$/mg eggs/hr, at one day after oviposition and then gradually decreased to 2.2${mu}ell$/mg eggs/hr at 9days. The rates of oxygen uptake of eggs raised immediately after HCl-treatment and reached to a maximal level of 484.5 ${mu}ell$/mg eggs/hr in 9-day-old eggs, which corresponds to 220 fold that of diapause eggs, and the hatching ability was also over 50%. In order to break diapause, eggs incubated at $25^{\circ}C$ for 30 days after oviposition had to be kept at least for 45 days at 5$^{\circ}C$, but chilled eggs for 90 days or longer hatched at 10 days as normal hatching periods. We also investigate periods which the value of $O_2$ uptake of eggs chilled during 15 to 120 days at 5$^{\circ}C$ reached at 200 ${mu}ell$/mg eggs/hr. As a result of that, $O_2$ uptake of eggs chilled during 15 to 45days were not reached at 200 ${mu}ell$/mg eggs/hr and longer the chilling durations are, the higher the rate of $O_2$ uptake is and the longer the chilling durations are, the shorter the periods up to hatching is. And also, hatch-ability increased rapidly as $O_2$ uptake reaches over 20/eggs/hr.

Factors Affecting Microbial Respiration (MR) by Rapid Oxygen Uptake Rate (OUR) Monitoring (급속 OUR 모니터링을 이용한 Microbial Respiration (MR) 영향인자 평가)

  • Park, Se-Yong;Mo, Kyung;Kim, Youn-Kwon;Kim, Moon-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.630-635
    • /
    • 2011
  • As this study was estimation of factors of rapid OUR (Oxygen Uptake Rate) monitoring method. Experiment for estimating factors of optimal microorganism activity was carried out in this study. In addition to comparison and estimation of SCOD variation by OUR variation using real wastewaters. In consequence OUR value was highest when F/M ratio, pH and temperature were 0.03~0.05, 6.0~8.5 and $20{\sim}30^{\circ}C$ respectively. Oxygen consumption by nitrification was incomplete. OUR variation of SCOD was recognizable difference of degradable rate at before and after of inflection point OUR. This study used an experimental method for real time prediction of the influent of the sewage treatment plant for optimal operation is expected to be able to do.

Kinetic Analysis about the Bidirectional Transport of 1-Anilino-8-naphthalene Sulfonate (ANS) by Isolated Rat Hepatocytes

  • Lee, Pung-Sok;Song, Im-Sook;Shin, Tae-Ha;Chung, Suk-Jae;Shim, Chang-Koo;Song, Sukgil;Chung, Youn-Bok
    • Archives of Pharmacal Research
    • /
    • v.26 no.4
    • /
    • pp.338-343
    • /
    • 2003
  • The purpose of the present study was to investigate the bidirectional transport of 1-anilino-8-naphthalene sulfonate (ANS) using isolated rat hepatocytes. The initial uptake rate of ANS by isolated hepatocytes was determined. The uptake process of ANS was saturable, with a $K_m of 29.1\pm3.2 \mu M and V_{max} of 2.9\pm0.1$ mmol/min/mg protein. Subsequently, the initial efflux rate of ANS from isolated hepatocytes was determined by resuspending preloaded cells to 3.0% (w/v) BSA buffer. The efflux process for total ANS revealed a little saturability. The mean value of the efflux clearance was $2.2\pm0.1 \mu$ L/min/mg protein. The efflux rate of ANS from hepatocytes was markedly decreased at $4^{\circ}C$, indicating that the apparent efflux of ANS might not be attributed to the release of ANS bound to the cell surface, but to the efflux of ANS from intracellular space. The efflux clearance was furthermore corrected for the unbound intracellular ANS concentration on the basis of its binding parameters to cytosol. The relation between efflux rate and unbound ANS concentration was fitted well to the Michaelis-Menten equation with a saturable and a nonsaturable components. The $V_{max} and K_m$ values were 0.54 mmol/min/mg protein, and 10.0 $\mu$ M, respectively. Based on the comparison of the ratios of $V_{max} to K_m (V_{max}/K_m)$ corresponding to the transport clearance, the influx clearance was two times higher than the efflux clearance. Together with our preliminary studies that ATP suppression in hepatocytes substantially inhibited ANS influx rate, we concluded that the hepatic uptake of ANS is actively taken up into hepatocytes via the carrier mediated transport system.

Assessment of Characteristics and Field Applicability with TPA By-Product as Alternative External Carbon Source (대체 외부탄소원으로서의 TPA 생산부산물 특성 및 현장적용성 평가)

  • Jung, In-Chul;Jun, Sung-Gyu;Sung, Nak-Chang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.480-486
    • /
    • 2006
  • On account of exchanging main process from chemical precipitation for MLE(Modified Ludzark-Ettinger), an external carbon source was required for supplementation of carbon source shortage that was needed biological denitrification in the S sewage treatment plant(S-STP). In this study, NUR(nitrate uptake rate), OUR(oxygen uptake rate) test and a field application test was conducted for the applicability assessment of Terephtalic acid(TPA) by-product contained about 4.7% acetate as alternative external carbon source. As the results, TPA by-product shows more rapid acclimation than methanol, 8.24 mg ${NO_3}^--N/g$ VSS/hr specific denitrification rate, 3.70 g $COD_{Cr}/g\;NO_3$ C/N ratio and 99.4% readily biodegradable COD contents. In the results of field application, the nutrient removal efficiency was high and effluent T-N concentration is 8.2 mg/L. It is concluded that TPA by-product is the proper alternative external carbon source.

Characterization of the Hepatic Uptake of l-Anilino-8-naphthalene sulfonate(ANS) by Isolated Rat Hepatocytes-Is Serum Protein Essential for Hepatic Uptake of ANS in the Liver?- (유리간세포를 사용한 ANS의 간내 이행에 관한 연구-ANS의 간내 이행과정에 단백질 매개 기구가 존재하는가?-)

  • Chung, Youn-Bok;Yuk, Dong-Yeon;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 1991
  • The hepatic uptake of an anionic fluorescence probe, l-anilino-8-naphthalene sulfonate (ANS) was characterized using isolated rat hepatocytes. The initial uptake rate of ANS by isolated hepatocytes was determined. The uptake process of ANS was fitted well to the Michaelis-Menten equation with a saturable component. The $V_{max}$ and $K_m$ values were $2.9{\pm}0.1\;nmol/min/mg$ protein and $29.1{\pm}3.2\;{\mu}M$, respectively. The uptake clearance $(CL_{up})$ based on the ratio of $V_{max}$ to $K_m$ was 11.7 ml/min/g liver, revealing the good coincidence with that assessed from the analysis of the plasma disappearance curve in previous report. Furthermore, the effect of serum protein on the hepatic uptake of ANS into isolated hepatocytes was investigated. The permeability clearances $(PS_{inf})$ of ANS uptake were much higher than those predicted based on the unbound fractions in the presence of serum. These suggested that the hepatic uptake of extensively serum protein-bound ANS is mediated not only by the unbound form of ligand but also by the serum protein-mediated uptake mechanism.

  • PDF

Thermosol Dyeing of Industrial Polyester Belt (산업용 Polyester Belt의 서머졸 염색)

  • 김호정;이문철
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.9-14
    • /
    • 1999
  • To investigate the effect of dyeing conditions, such as pick-up rate, dye concentration, time and temperature in thermosol dyeing on the dyeability of industrial polyester belt, dye uptake and rubbing fastness were measured. The dye uptake was increased with the increase of pick-up rate, dye concentration, dyeing time and temperature. The high rubbing fastness(class 5) for polyester belt dyed with Cibacet Blue F3R at the various conditions was obtained.

  • PDF

Effete of Ozone Uptake Rate on Photosynthesis and Antioxidant Activity in the Leaves of Betula Species (자작나무류 잎의 오존흡입량이 광합성 및 항산화효소 활성에 미치는 영향)

  • 이재천;한심희;장석성;조경진;김용율
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.72-79
    • /
    • 2002
  • This study was conducted to compare the physiological and biochemical responses of four Betula species in response to ozone, and to find out the relationship between ozone uptake rate and photosynthesis or antioxidant activity. One-year-old seedlings of four Betula sp, B. costata, B. davurica, B. platyphylla var, japonica, and B. ermani, exposed to 100 pub ozone concentration for 8h day$^{-1}$ for 5 weeks in fumigation chamber. Ozone uptake rate, photosynthesis, SOD and GR activity were measured in the leaves of four species once a week. Cumulative ozone uptake rate was largest in the loaves of B. costata(53.8 mmol m$^{-2}$ ), smallest in the leaves of B. davurica(35.5 mmol m$^{-2}$ ). Photosynthesis of four Betula sp. exposed to ozone reduced relative to control, but the photosynthetic responses with changing stomatal conductance were different among species. Ozone exposure increased SOD activities of four species at the early exposing period, but after a critical point SOD activity decreased gradually. GR activity of B. costata was similar to the change of SOD activity, but the others showed the different patterns from B. costata. In conclusion, decreasing both SOD and GR activity at the critical point, B. costata may be sensitive species in response to ozone. In contrast, the others may be resistant species, which gradually increase GR activity following ozone exposure. GR activity was not always in accord with the change of SOD activity against ozone uptake, and the different responses between species were supposed to be affected by the cumulative ozone uptake.

Reduction in CO2 uptake rates of red tide dinoflagellates due to mixotrophy

  • Jeong, Hae Jin;Lee, Kitack;Yoo, Yeong Du;Kim, Ja-Myung;Kim, Tae Hoon;Kim, Miok;Kim, Ju-Hyoung;Kim, Kwang Young
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.351-362
    • /
    • 2016
  • We investigated a possible reduction in $CO_2$ uptake rate by phototrophic red tide dinoflagellates arising from mixotrophy. We measured the daily ingestion rates of Prorocentrum minimum by Prorocentrum micans over 5 days in 10 L experimental bottles, and the uptake rates of total dissolved inorganic carbon ($C_T$) by a mixture of P. micans and P. minimum(mixotrophic growth), and for the predator P. micans (phototrophic growth; control) and prey P. minimum (phototrophic growth; control) alone. To account for the effect of pH on the phototrophic growth rates of P. micans and P. minimum, measurements of $C_T$ and pH in the predator and prey control bottles were continued until the pH reached the same level (pH 9.5) as that in the experimental bottles on the final day of incubation. The measured total $C_T$ uptake rate by the mixture of P. micans and P. minimum changed from 123 to $161{\mu}mol\;C_T\;kg^{-1}\;d^{-1}$ over the course of the experiment, and was lower than the $C_T$ uptake rates shown by P. micans and P. minimum in the predator and prey control bottles, respectively, which changed from 132 to $17{\mu}mol\;C_T\;kg^{-1}\;d^{-1}$ over the course of the experiment. The reduction in total $C_T$ uptake rate arising from the mixotrophy of P. micans was 7-31% of the daily $C_T$ uptake rate seen during photosynthesis. The results suggest that red tide dinoflagellates take up less $C_T$ during mixotrophy.

TA Study on Maximum Oxygen Uptake according to Body Measurement and Vascular Compliance (신체계측치 및 혈관탄성도에 따른 최대산소섭취량에 관한 연구)

  • Nam, Young-Kyu;Kim, Keon-Yeop;Lee, Moo-Sik;Kim, Dae-Kyung;Jang, Min-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3458-3464
    • /
    • 2009
  • This study was conducted to investigate the relationship between maximum oxygen uptake and its related factors including body measurement and vascular compliance. The subjects of our study were 43 males and 53 females aged 40 to 59 who were visited in military health center. The main results were that 1.the degree of obesity had significantly negative correlation to vascular compliance in male, and waist-hip ratio in female. 2. The degree of obesity, body mass index, waist-hip ratio and body fat percent had significantly negative correlation to maximum oxygen uptake in male, and waist-hip ratio & body fat percent in female. 3. Maximum heart rate had significantly positive correlation to maximum oxygen uptake in male, and vascular compliance & maximum heart rate in female. 4. In multiple regression analysis which maximum oxygen uptake was as dependent variable, body fat percent, vascular compliance and maximum heart rate were significant variables for both male and female. In conclusion, Maximum oxygen uptake of some rural people age 40 to 59 were affected by various factors such as body fat percent, vascular compliance, and maximum heart rate.

Growth and Phosphate Uptake of the Toxic Dinoflagellate Gymnodinium catenatum Isolated from Yeosuhae Bay, South Korea (여수해만산 유독 와편모조류 Gymnodinium catenotum (Graham)의 용존태 무기인에 대한 성장 및 흡수)

  • Oh, Seok-Jin;Yoon, Yang-Ho;Yang, Han-Soeb
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.2
    • /
    • pp.95-101
    • /
    • 2007
  • We investigated the growth and phosphate uptake of a toxic dinoflagellate, Gymnodinium catenatum, isolated from Yeosuhae Bay, South Korea. A short-term phosphate uptake experiment revealed that its maximum uptake and the half-saturation constant were 1.39 pmol/cell/hr and $2.65{\mu}M$, respectively. In a semicontinuous culture, the maximum specific growth rate and minimum phosphorus cell quota of G. catenatum were 0.39/day and 1.27 pmol/cell, respectively. Thus, G. catenatum is a poor competitor in terms of inorganic nutrient use and is unlikely to form blooms in Yeosuhae Bay.