Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.11.17

Reduction in CO2 uptake rates of red tide dinoflagellates due to mixotrophy  

Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Lee, Kitack (School of Environmental Science and Engineering, Pohang University of Science and Technology)
Yoo, Yeong Du (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
Kim, Ja-Myung (School of Environmental Science and Engineering, Pohang University of Science and Technology)
Kim, Tae Hoon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Kim, Miok (School of Environmental Science and Engineering, Pohang University of Science and Technology)
Kim, Ju-Hyoung (Faculty of Marine Applied Biosciences, Kunsan National University)
Kim, Kwang Young (Department of Oceanography, College of Natural Sciences, Chonnam National University)
Publication Information
ALGAE / v.31, no.4, 2016 , pp. 351-362 More about this Journal
Abstract
We investigated a possible reduction in $CO_2$ uptake rate by phototrophic red tide dinoflagellates arising from mixotrophy. We measured the daily ingestion rates of Prorocentrum minimum by Prorocentrum micans over 5 days in 10 L experimental bottles, and the uptake rates of total dissolved inorganic carbon ($C_T$) by a mixture of P. micans and P. minimum(mixotrophic growth), and for the predator P. micans (phototrophic growth; control) and prey P. minimum (phototrophic growth; control) alone. To account for the effect of pH on the phototrophic growth rates of P. micans and P. minimum, measurements of $C_T$ and pH in the predator and prey control bottles were continued until the pH reached the same level (pH 9.5) as that in the experimental bottles on the final day of incubation. The measured total $C_T$ uptake rate by the mixture of P. micans and P. minimum changed from 123 to $161{\mu}mol\;C_T\;kg^{-1}\;d^{-1}$ over the course of the experiment, and was lower than the $C_T$ uptake rates shown by P. micans and P. minimum in the predator and prey control bottles, respectively, which changed from 132 to $17{\mu}mol\;C_T\;kg^{-1}\;d^{-1}$ over the course of the experiment. The reduction in total $C_T$ uptake rate arising from the mixotrophy of P. micans was 7-31% of the daily $C_T$ uptake rate seen during photosynthesis. The results suggest that red tide dinoflagellates take up less $C_T$ during mixotrophy.
Keywords
carbon dioxide; dissolved inorganic carbon; marine phytoplankton; mixotrophy; pH; photosynthesis; Prorocentrum micans; Proro centrum minimum;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicx, R. M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18:897-907.   DOI
2 Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H. & Pierrot, D. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100:80-94.   DOI
3 Millero, F. J., Pierrot, D., Lee, K., Wanninkhof, R., Feely, R., Sabine, C. L., Key, R. M. & Takahashi, T. 2002. Dissociation constants for carbonic acid determined from field measurements. Deep-Sea Res. Part I Oceanogr. Res. Pap. 49:1705-1723.   DOI
4 Miyachi, S., Iwasaki, I. & Shiraiwa, Y. 2003. Historical perspective on microalgal and cyanobacterial acclimation to low-and extremely high-$CO_2$ conditions. Photosynthesis Res. 77:139-153.   DOI
5 Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91.   DOI
6 Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005b. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microb. Ecol. 40:133-150.   DOI
7 Jeong, H. J., Yoo, Y. D., Seong, K. A., Kim, J. H., Park, J. Y., Kim, S., Lee, S. H., Ha, J. H. & Yih, W. H. 2005c. Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquat. Microb. Ecol. 38:249-257.   DOI
8 Keeling, C. D. & Whorf, T. P. 2000. The 1,800-year oceanic tidal cycle: a possible cause of rapid climate change. Proc. Natl. Acad. Sci. U. S. A. 97:3814-3819.   DOI
9 Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D. C., Leggat, W. & Price, G. D. 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based $CO_2$-concentrating mechanisms in the algae. Can. J. Bot. 76:1052-1071.
10 Arar, E. J. & Collins G. B. 1997. In vitro determination of chlorophyll a and pheophytina in marine and freshwater algae by fluorescence. m445.0-11. National Exposure Research Laboratory, U.S. Environmental Protection Agency, Athens, GA.
11 Berge, T., Hansen, P. J. & Moestrup, O. 2008. Prey size spectrum and bioenergetics of the mixotrophic dinoflagellate Karlodinium armiger. Aquat. Microb. Ecol. 50:289-299.   DOI
12 Bockstahler, K. R. & Coats, D. W. 1993. Grazing of the mixotrophic dinoflagellate Gymnodinium sanguineum on ciliate populations of Chesapeake Bay. Mar. Biol. 116:477-487.   DOI
13 Burkhardt, S., Amoroso, G., Riebesell, U. & Sultemeyer, D. 2001. $CO_2$ and $HCO_3$-uptake in marine diatoms acclimated to different $CO_2$ concentrations. Limnol. Oceanogr. 46:1378-1391.   DOI
14 Burkholder, J. M., Glibert, P. M. & Skelton, H. M. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93.   DOI
15 Dason, J. S., Huertas, I. E. & Colman, B. 2004. Source of inorganic carbon for photosynthesis in two marine dinoflagellates. J. Phycol. 40:285-292.   DOI
16 Reinfelder, J. R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 3:291-315.   DOI
17 Nimer, N. A., Brownlee, C. & Merrett, M. J. 1999. Extracellular carbonic anhydrase facilitates carbon dioxide availability for photosynthesis in the marine dinoflagellate Prorocentrum micans. Plant Physiol. 120:105-111.   DOI
18 Nygaard, K. & Tobiesen, A. 1993. Bacterivory in algae: a survival strategy during nutrient limitation. Limnol. Oceanogr. 38:273-279.   DOI
19 Park, M. G., Kim, S., Kim, H. S., Myung, G., Kang, Y. G. & Yih, W. 2006. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 45:101-106.   DOI
20 Rene, A., Camp, J. & Garces, E. 2014. Polykrikos tanit sp. nov., a new mixotrophic unarmoured pseudocolonial dinoflagellate from the NW Mediterranean Sea. Protist 165:81-92.   DOI
21 Sabine, C. L., Key, R. M., Johnson, K. M., Millero, F. J., Poisson, A., Sarmiento, J. L., Wallace, D. W. R. & Winn, C. D. 1999. Anthropogenic $CO_2$ inventory of the Indian Ocean. Glob. Biogeochem. Cycles 13:179-198.   DOI
22 Dickson, A. G. & Millero, F. J. 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res. A 34:1733-1743.   DOI
23 Emerson, S., Quay, P., Karl, D., Winn, C., Tupas, L. & Landry, M. 1997. Experimental determination of the organic carbon flux from open-ocean surface waters. Nature 389:951-954.   DOI
24 Kim, J.-H., Kang, E. J., Kim, K., Jeong, H. J., Lee, K., Edwards, M. S., Park, M. G., Lee, B.-G. & Kim, K. Y. 2015a. Evaluation of carbon flux in vegetative bay based on ecosystem production and $CO_2$ exchange driven by coastal autotrophs. Algae 30:121-137.   DOI
25 Kim, S., Yoon, J. & Park, M. G. 2015b. Obligate mixotrophy of the pigmented dinoflagellate Polykrikos lebourae (Dinophyceae, Dinoflagellata). Algae 30:35-47.   DOI
26 Rost, B., Richter, K.-U., Riebesell, U. & Hansen, P. J. 2006. Inorganic carbon acquisition in red tide dinoflagellates. Plant Cell Environ. 29:810-822.   DOI
27 Rost, B., Riebesell, U., Burkhardt, S. & Sultemeyer, D. 2003. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 48:55-67.   DOI
28 Sabine, C. L., Feely, R. A., Key, R. M., Bullister, J. L., Millero, F. J., Lee, K., Peng, T.-H., Tilbrook, B., Ono, T. & Wong, C. S. 2002. Distribution of anthropogenic $CO_2$ in the Pacific Ocean. Glob. Biogeochem. Cycles 16:1083.
29 Lee, K. 2001. Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. Limnol. Oceanogr. 46:1287-1297.   DOI
30 Laws, E. A., Falkowski, P. G., Smith, W. O. Jr., Ducklow, H. & McCarthy, J. J. 2000. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14:1231-1246.   DOI
31 Lee, K., Choi, S.-D., Park, G.-H., Wanninkhof, R., Peng, T. -H., Key, R. M., Sabine, C. L., Feely, R. A., Bullister, J. L., Millero, F. J. & Kozyr, A. 2003. An update anthropogenic $CO_2$ inventory in the Atlantic Ocean. Glob. Biogeochem. Cycles 17:1116.
32 Lee, K., Millero, F. J., Byrne, R. H., Feely, R. A. & Wanninkhof, R. 2000. The recommended dissociation constants for carbonic acid in seawater. Geophys. Res. Lett. 27:229-232.   DOI
33 Lee, K., Millero, F. J. & Campbell, D. M. 1996. The reliability of the thermodynamic constants for the dissociation of carbonic acid in seawater. Mar. Chem. 55:233-245.   DOI
34 Lee, K. H., Jeong, H. J., Jang, T. Y., Lim, A. S., Kang, N. S., Kim, J.-H., Kim, K. Y., Park, K.-T. & Lee, K. 2014a. Feeding by the newly described mixotrophic dinoflagellate Gymnodinium smaydae: feeding mechanism, prey species, and effect of prey concentration. J. Exp. Mar. Biol. Ecol. 459:114-125.   DOI
35 Hansen, P. J., Lundholm, N. & Rost, B. 2007. Growth limitation in marine red-tide dinoflagellates: effects of pH versus inorganic carbon availability. Mar. Ecol. Prog. Ser. 334:63-71.   DOI
36 Giordano, M., Beardall, J. & Raven, J. A. 2005. $CO_2$ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99-131.
37 Glibert, P. M., Burkholder, J. M., Kana, T. M., Alexander, J., Skelton, H. & Shilling, C. 2009. Grazing by Karenia brevis on Synechococcus enhances its growth rate and may help to sustain blooms. Aquat. Microb. Ecol. 55:17-30.   DOI
38 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Grun. Can. J. Microbiol. 8:229-239.   DOI
39 Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., Van der Linden, P. J. & Xiaosu, D. 2001. Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, 881 pp.
40 Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285.   DOI
41 Falkowski, P. G. & Raven, J. A. 1997. Aquatic photosynthesis. Blackwell Scientific Publishers, Oxford, 375 pp.
42 Jeong, H. J. & Latz, M. I. 1994. Growth and grazing rates of the heterotrphic dinoflagellates Protoperidinium spp. on red tide dinoflagellates. Mar. Ecol. Prog. Ser. 106:173-185.   DOI
43 Jeong, H. J., Lee, C. W., Yih, W. H. & Kim, J. S. 1997. Fragilidium cf. mexicanum, a thecate mixotrophic dinoflagellate, which is prey for and a predator on co-occurring thecate heterotrophic dinoflagellate Protoperidinium cf. divergens. Mar. Ecol. Prog. Ser. 151:299-305.   DOI
44 Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81.   DOI
45 Lee, M. J., Jeong, H. J., Lee, K. H., Jang, S. H., Kim, J. H. & Kim, K. Y. 2015. Mixotrophy in the nematocyst-taeniocyst complex-bearing phototrophic dinoflagellate Polykrikos hartmannii. Harmful Algae 49:124-134.   DOI
46 Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014b. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152.   DOI
47 Legrand, C., Graneli, E. & Carlsson, P. 1998. Induced phagotrophy in the photosynthetic dinoflagellate Heterocapsa triquetra. Aquat. Microb. Ecol. 15:65-75.   DOI
48 Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18.   DOI
49 Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401.   DOI
50 Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43.   DOI
51 Wanninkhof, R., Lewis, E., Feely, R. A. & Millero, F. J. 1999. The optimal carbonate dissociation constants for determining surface water $pCO_2$ from alkalinity and total inorganic carbon. Mar. Chem. 65:291-301.   DOI
52 Yoo, Y. D., Jeong, H. J., Kim, M. S., Kang, N. S., Song, J. Y., Shin, W., Kim, K. Y. & Lee, K. 2009. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J. Eukaryot. Microbiol. 56:413-420.   DOI
53 Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97.   DOI
54 Skovgaard, A., Hansen, P. J. & Stoecker, D. K. 2000. Physiology of the mixotrophic dinoflagellate Fragilidium subglobosum. I. Effects of phagotrophy and irradiance on photosynthesis and carbon content. Mar. Ecol. Prog. Ser. 201:129-136.   DOI
55 Lueker, T. J., Dickson, A. G. & Keeling, C. D. 2000. Ocean $pCO_2$ calculated from dissolved inorganic carbon, alkalinity, and equations for $K_1$ and $K_2$: validation based on laboratory measurements of $CO_2$ in gas and seawater at equilibrium. Mar. Chem. 70:105-119.   DOI
56 Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609.   DOI
57 Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.   DOI
58 Jeong, H. J., Park, J. Y., Nho, J. H., Park, M. O., Ha, J. H., Seong, K. A., Jeng, C., Seong, C. N. & Yih, W. H. 2005a. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 41:131-143.   DOI