• Title/Summary/Keyword: uptake capacity

Search Result 349, Processing Time 0.026 seconds

Real-time Control of Biological Animal Wastewater Treatment Process and Stability of Control Parameters (생물학적 축산폐수 처리공정의 자동제어 방법 및 제어 인자의 안정성)

  • Kim, W.Y.;Jung, J.H.;Ra, C.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.251-260
    • /
    • 2004
  • The feasibility and stability of ORP, pH(mV) and DO as a real-time control parameter for SBR process were evaluated in this study. During operation, NBP(nitrogen break point) and NKP(nitrate knee point), which reveal the biological and chemical changes of pollutants, were clearly observed on ORP and pH(mV)-time profiles, and those control points were easily detected by tracking the moving slope changes(MSC). However, when balance of aeration rate to loading rate, or to OUR(oxygen uptake rate), was not optimally maintained, either false NBP was occurred on ORP and DO curves before the appearance of real NBP or specific NBP feature was disappeared on ORP curve. Under that condition, however, very distinct NBP was found on pH(mV)-time profile, and stable detection of that point was feasible by tracking MSC. These results might mean that pH(mV) is superior real-time control parameter for aerobic process than ORP and DO. Meanwhile, as a real-time control parameter for anoxic process, ORP was very stable and more useful parameter than others. Based on these results, a stable real-time control of process can be achieved by using the ORP and pH(mv) parameters in combination rather than using separately. A complete removal of pollutants could be always ensured with this real-time control technology, despite the variations of wastewater and operation condition, as well as an optimization of treatment time and capacity could be feasible.

Preparation and Characterization of a Cross-Linked Anion-Exchange Membrane Based on PVC for Electrochemical Capacitor (전기화학 캐퍼시터용 PVC기반 가교 음이온교환 멤브레인의 제조 및 특성)

  • Kim, Young-Ji;Kim, Soo-Yeoun;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.903-913
    • /
    • 2021
  • Three-type PVC membranes denoted by AEM-1, AEM-2, and AEM-3 with a cross-linked anion-exchange group were prepared by substitution reaction of PVC with triethyldiamine (TEDA), 1,4-dimethylpiperazine (DMP), and 1,4-bis(imidazol-1-ylmethyl)benzene (BIB) in cyclohexanone, respectively. We confirmed the successful preparation of the AEM-1, AEM-2, and AEM-3 via ionic conductivity (S/cm), water uptake (%), contact angle, ion-exchange capacity (meq/g), thermal properties, SEM and XPS analysis, respectively. The electrochemical capacitor experiments using PVC membrane with cross-linked anion-exchange group in organic electrolytes were performed. The prepared AEM-1, AEM-2 AEM-3 have a good stability by charge and discharge performance in organic electrolyte. As a result, the AEM-2 and AEM-3 membrane based on PVC prepared by the solvent casting method after substituent reaction is suitable for the use as a separator in organic electrochemical capacitor (supercapacitor).

Gold Recovery from Cyanide Solution through Biosorption, Desorption and Incineration with Waste Biomass of Corynebacterium glutamicum as Biosorbent (생체흡착, 탈착 및 회화를 이용한 시안 용액으로부터 금의 회수)

  • Bae, Min-A;Kwak, In-Seob;Won, Sung-Wook;Yun, Yeoung-Sang
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.117-123
    • /
    • 2010
  • In this study, we propose two methods able to recover different type of gold from gold-cyanide solutions: biosorption and desorption process for mono-valent gold recovery and biosorption and incineration process for zero-valent gold recovery. The waste bacterial biomass of Corynebacterium glutamicum generated from amino acid fermentation industry was used as a biosorbent. The pH edge experiments indicated that the optimal pH range was pH 2 - 3. From isothermal experiment and its fitting with Langmuir equation, the maximum uptake capacity of Au(I) at pH 2.5 were determined to be 35.15 mg/g. Kinetic tests evidenced that the process is very fast so that biosorption equilibrium was completed within the 60 min. To recover Au(I), the gold ions were able to be successfully eluted from the Au-loaded biosorbent by changing the pH to pH 7 and the desorption efficiency was 91%. This indicates that the combined process of biosorption and desorption would be effective for the recovery of Au(I). In order to recover zero-valent gold, the Au-loaded biosorbents were incinerated. The content of zero-valent gold in the incineration ash was as high as 85%. Therefore, we claim on the basis of the results that two suggested combined processes could be useful to recover gold from cyanide solutions and chosen according to the type of gold to be recovered.

Cellulose Nanocrystals Incorporated Poly(arylene piperidinium) Anion Exchange Mixed Matrix Membranes (셀룰로오스 나노 결정을 도입한 폴리아릴렌 피페리디늄 음이온 교환 복합매질분리막)

  • Da Hye Sim;Young Park;Young-Woo Choi;Jung Tae Park;Jae Hun Lee
    • Membrane Journal
    • /
    • v.34 no.2
    • /
    • pp.154-162
    • /
    • 2024
  • Anion exchange membranes (AEMs) are essential components in water electrolysis systems, serving to physically separate the generated hydrogen and oxygen gases while enabling the selective transport of hydroxide ions between electrodes. Key characteristics sought in AEMs include high ion conductivity and robust chemical and mechanical stability in alkaline. In this study, quaternized Poly(terphenyl piperidinium)/cellulose nanocrystals (qPTP/CNC) mixed matrix membrane was fabricated. The polymer matrix, PTP, was synthesized via super-acid polymerization, known for its excellent ion conductivity and alkaline durability. The qPTP/CNC membrane showed a dense and uniform morphology without significant voids or large aggregates at the polymer-nanoparticle interface. The qPTP/CNC membrane containing 2 wt% CNC demonstrated a high ion exchange capacity of 1.90 mmol/g, coupled with low water uptake (9.09%) and swelling ratio (5.56%). Additionally, the qPTP/CNC membrane showed significantly lower resistance and superior alkaline stability (384 hours at 50℃ in 1 M KOH) compared to the commercial FAA-3-50 membrane. These results highlight the potential of hydrophilic additive CNC in enhancing ion conductivity and alkaline durability of ion exchange membranes.

The Relationship of $VO_2$Max/Min in Cardiopulmonary Exercise Test and Fat Distribution (운동부하심폐기능검사상의 분당최대산소섭취량과 체내 지방분포와의 상관관계)

  • Choi, Jae-Chol;Jee, Hyun-Suk;Park, Young-Bum;Park, Sung-Jin;Yoo, Jee-Hoon;Kim, Jae-Yeol;Park, In-Won;Choi, Byoung-Whui;Hue, Sung-Ho
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.4
    • /
    • pp.495-501
    • /
    • 2000
  • Background : Cardiopulmonary exercise test is a useful test for the evaluation of the cardiovascular and respiratory systems. Obese subjects have an increased resting metabolic rate ($VO_2$) compared to non~obese subjects and the increase is more marked during dynamic exercise, which results in the limitation of maximal exercise in obese subjects. In this study, the influence of the obesity and fat distribution on the maximal exercise capacity were evaluated. Methods : Maximal exercise capacity was represented by maximam maximum oxygen uptake and $VO_2$ max in the cardiopulmonary test. Obesity, total fat content and abdomina1 obesity(waist to hip ratio, WHR) were measured by bioelectrical impedence method. Total of 42 volunteers (male 22, fema1e 20) were evaluated. Results : 1) Weight to height ratio (mean$\pm$SD) was 110$\pm$14.9% in men and 100$\pm$11.1% in women. 2) Fat ratio (mean$\pm$SD) was 23.3$\pm$5.2% in men and 27.55$\pm$3.9% in woman. 3) Waist to hip ratio (mean$\pm$SD) was 0.85$\pm$0.04 in men and 0.8$\pm$0.03 in woman. 4) In men, $VO_2$ max/min/Kg was negatively correlated with obesity, fat ratio, and abdominal fat distribution. 5) In woman, $VO_2$ max/Kg was negatively correlated with obesity and fat ratio, but did not show significant relationship with abdominal fat distribution. Conclusion : Obesity was a limiting factor for maximal exercise in both men and women. Abdominal obesity was a limiting factor for maximal exercise in men but its implication to women needs further evaluation.

  • PDF

Chlorophyll Fluorescence and $CO_2$ Fixation Capacity in Leaves of Camellia sinensis, Camellia japonica, and Citrus unshiu (차나무, 동백나무, 귤나무 잎에서 엽록소 형광 및 $CO_2$ 흡수능의 비교 분석)

  • Oh, Soonja;Lee, Jin-Ho;Ko, Kwang-Sup;Koh, Seok Chan
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.98-106
    • /
    • 2012
  • The chlorophyll fluorescence and photosynthetic $CO_2$ fixation capacity of leaves from three major crop trees found on Jeju Island, Camellia sinensis L., Camellia japonica L., and Citrus unshiu M., were analyzed. The photosynthetic $CO_2$ fixation rate of C. sinensis was similar to that of C. unshiu, and much higher than that of C. japonica which belongs to the same genus. Stomatal conductance in the three species was high at dawn and low during daytime. The intercellular $CO_2$ concentration of the three species was also high at dawn and decreased at midday. The transpiration rate showed an opposite trend from the intercellular $CO_2$ concentration. The photochemical efficiencies of PSII (Fv/Fm) in C. sinensis were slightly lower at midday compared to the level at dawn and/or dusk. The decline in Fv/Fm of C. sinensis at midday was much smaller than that of C. japonica. These results indicate that C. sinensis is better acclimated to high levels of radiation under natural conditions in late summer, although its PSII reaction center was inhibited by strong radiation. Of the chlorophyll fluorescence parameters in the species, the RC/CS decreased significantly while the ABS/RC, TRo/RC, ETo/RC, and DIo/RC increased significantly at midday in late summer. However, C. unshiu did not show significant changes in these values depending on the time of day. Among the three species, the daily $CO_2$ fixation rate in C. sinensis ($320.1mmol\;m^{-2}d^{-1}$) was the highest, followed by that of C. unshiu ($292.5mmol\;m^{-2}d^{-1}$) and C. japonica ($244.8mmol\;m^{-2}d^{-1}$). Thus, C. sinensis may be a valuable crop tree in terms of the uptake of $CO_2$ under natural field conditions.

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances (화본과 및 두과 녹비작물 토양환원에 따른 토마토 생육 및 토양 양분수지량 변화)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.343-348
    • /
    • 2008
  • To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.

Effects of Red-ginseng Extracts on the Activation of Dendritic Cells (고려홍삼의 수지상세포 활성화 효과)

  • Kim, Do-Soon;Park, Jueng-Eun;Seo, Kwon-Il;Ko, Sung-Ryong;Lee, Jong-Won;Do, Jae-Ho;Yee, Sung-Tae
    • Journal of Ginseng Research
    • /
    • v.30 no.3
    • /
    • pp.117-127
    • /
    • 2006
  • Ginseng is a medicinal herb widely used in Asian countries. Dendritic cells(DCs) play a pivotal role in the initiation of T cell-mediated immune responses, making them an attractive cellular adjuvant for use in cancer vaccines. In this study, we examined the effects of Red-ginseng(water extract, edible and fermented ethyl alcohol extract, crude saponin) on the DCs phenotypic and functional maturation. Immature DCs were cultured in the presence of GM-CSF and IL-4, and the generated immature DCs were stimulated by water extract, edible and fermented ethyl alcohol extract, crude saponin and LPS, respectively, for 24hours. The expression of surface co-stimulatory molecules, including MHC(major histocompatibility complex) class II, CD40, CD80 and CD86, was increased on DCs that were stimulated with crude saponin, but antigen-uptake capacity was decreased. The antigen-presenting capacity of Red-ginseng extracts-treated DCs as analyzed by allogeneic T cells proliferation and IL-2, $IFN-{\gamma}$ production was increased. Furthermore, $CD4^+$ and $CD8^+$ syngeneic T cell(OVA-specific) proliferation and $IFN-{\gamma}$ production was significantly increased. However, $CD4^+$ syngeneic T cell secreted higher levels of IL-2 in responding but not $CD8^+$ syngeneic T cell. These results indicate the immunomodulatory properties of Red-ginseng extracts, which might be therapeutically useful in the control of cancers and immunodeficient diseases through the up-regulation of DCs maturation.

Functional component analysis and physical property of Cheonnyuncho (Opuntia humifusa) powder (천년초 분말의 기능성분 분석과 물리적 특성 연구)

  • Shin, Dong-Sun;Han, Gwi-Jung;Oh, Se-Gwan;Park, Hye-Young
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.838-844
    • /
    • 2015
  • The purpose of this study was to perform a functional components analysis and investigate the physical properties of powders made from the stems or fruit of freeze-dried Cheonnyuncho cactus (Opuntia humifusa). The functional components analysis showed that the stem and fruit powders han vitamin C levels of 42.14 mg and 105.21 mg, respectively. The stems powder contained more lutein than the fruit powder. The fruit powder contained more vitamin C than the stem powder. The SDF (soluble dietary fiber) and IDF (insoluble dietary fiber) in the stem powder were 45.24% and 22.15%, respectively, which were higher then the values for the fruit powder. The stem and fruit powders contained 19.30 mg/g and 25.10 mg/g of crude saponin, respectively. The pH of the stem and fruit powders was 5.34 and 5.07, respectively, both indicating low acidity. The L, a and b values of the stem powder color were 78.28, -3.71, and 19.19, respectively. The L, a and b values of the fruit powder color were 55.56, 24.84, and -3.18, respectively. The stems powder had a higher bulk density, water holding capacity, and swelling power than those of the fruit powder, but water-retaining capacity of the stem powder was lower than that of the fruit powder. In addition, the stems powder had a higher viscous material content and water uptake compared to the fruit powder. Based on the above results, we determined that Cheonnyuncho (Opuntia humifusa) powder had potentially useful functional components and physical properties.

Biosorption and Desorption of Heavy Metals using Undaria sp. (미역 폐기물의 중금속 흡탈착 특성)

  • Cho, Ju-Sik;Park, Il-Nam;Heo, Jong-Soo;Lee, Young-Seak
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.2
    • /
    • pp.92-98
    • /
    • 2004
  • The adsorption and desorption of Pb, Cd, Co, Zn, Cr, Co, Ni, and Mo on the waste Undaria sp. were studied. Except for Pb. the mono adsorption rate for all heavy metals were lower than that of the heavy metals mixed. However, the adsorption capacity of the heavy metals by 1g of biosorption, in mixed heavy metals increased According to FT-IR analysis of the biosorbent after heavy metal biosorption, the replacement of the functional group by the heavy metals ions could be confirmed and the inverted peaks became larger after heavy metals adsorption. The adsorption equilibrium of heavy metals was reached in about 1 hour. The equilibrium parameters were determined based on Langmuir and Freundlich isotherms. The affinity of metals on the biosorbent decreased in the following order: Pb>Cu>Cr>Cd>Co. The desorption rate decreased in the following sequence: NTA>$H_2SO_4$>HCl>EDTA. The desorption rate of heavy metals by NTA increased with increase in the concentration from 0.1 to 0.3% but the desorption rate became constant beyond 0.3%. Therefore, it represented that desorption rate of heavy metals was suitable under optimized condition ($30^{\circ}C$, pH 2 and 0.3% NTA solution) and was fast with 80% or more the uptake occurring within 10 min of contact time.