Browse > Article
http://dx.doi.org/10.12925/jkocs.2021.38.3.903

Preparation and Characterization of a Cross-Linked Anion-Exchange Membrane Based on PVC for Electrochemical Capacitor  

Kim, Young-Ji (Department of Cosmetic Science, Hannam University)
Kim, Soo-Yeoun (Department of Cosmetic Science, Hannam University)
Choi, Seong-Ho (Department of Cosmetic Science, Hannam University)
Publication Information
Journal of the Korean Applied Science and Technology / v.38, no.3, 2021 , pp. 903-913 More about this Journal
Abstract
Three-type PVC membranes denoted by AEM-1, AEM-2, and AEM-3 with a cross-linked anion-exchange group were prepared by substitution reaction of PVC with triethyldiamine (TEDA), 1,4-dimethylpiperazine (DMP), and 1,4-bis(imidazol-1-ylmethyl)benzene (BIB) in cyclohexanone, respectively. We confirmed the successful preparation of the AEM-1, AEM-2, and AEM-3 via ionic conductivity (S/cm), water uptake (%), contact angle, ion-exchange capacity (meq/g), thermal properties, SEM and XPS analysis, respectively. The electrochemical capacitor experiments using PVC membrane with cross-linked anion-exchange group in organic electrolytes were performed. The prepared AEM-1, AEM-2 AEM-3 have a good stability by charge and discharge performance in organic electrolyte. As a result, the AEM-2 and AEM-3 membrane based on PVC prepared by the solvent casting method after substituent reaction is suitable for the use as a separator in organic electrochemical capacitor (supercapacitor).
Keywords
PVC membrane; cross-linked anion-exchange group; energy storage chemicals; electrochemical capacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Qi, X. Yin, J. Zhang, "Transparent and heat-insulation plasticized polyvinyl chloride (PVC) thin film with solar spectrally selective property", Solar Energy Materials and Solar Cells, Vol. 151, pp 30-35, (2016).   DOI
2 L. Xia, L. Yu, D. Hu, G.Z. Chen, "Electrolytes for electrochemical energy storage", Materials Chemistry Frontiers" Materials Chemistry Frontiers, Vol. 1, No. 1, pp 584-618, (2017).   DOI
3 T. Mohammadi, M. Skyllas-Kazacos. "Characterization of novel composite membrane for redox flow battery applications." Journal of Membrane Science, Vol. 98, pp 77-87, (1995).   DOI
4 X.G. Teng, Y.T. Zhao, J.Y. Xi, Z.H. Wu, X.P. Qiu, L.Q. Chen. "Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol-gel reactions." Journal of Membrane Science Vol. 341, pp 149-154, (2009).   DOI
5 J.Y. Xi, Z.H. Wu, X.G. Teng, Y.T. Zhao, L.Q. Chen, X.P. Qiu. "Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries." Journal of Materials Chemistry, Vol. 12, pp 1232-1238, (2008).
6 T. Han, Y. Shi, Z. Yu, B. Shin, M. Lanza, "Potassium Hydroxide Mixed with Lithium Hydroxide: An Advanced Electrolyte for Oxygen Evolution Reaction", RRL Solar, Vol. 3, No. 1, pp 1980-2367, (2019).
7 S.H. Lee, S.H. Choi, S. A. Gopalan, K. P. Lee, A. I. Gopalan. "Preparation of new self-humidifying composite membrane by incorporating graphene and phosphotungstic acid into sulfonated poly(ether ether ketone) film." International Journal of Hydrogen Energy, Vol. 39, pp 17162-17177, (2014).   DOI
8 S.H. Mei, C.H. Xiao, X. Hu. "Preparation of porous PVC membrane via a phase inversion method from PVC/DMAc/water/additives." Journal of Applied Polymer Science, Vol. 120, pp 557-562, (2011).   DOI
9 M. Aghajania, A. R. Greenberg, Y. Ding, "Thin film composite membranes: Does the porous support truly have negligible resistance?" Journal of Membrane Science, Vol. 609, 118207, (2020).   DOI
10 J. Q. Huang, X. Guo, X. Lin, Y. Zhu, B. Zhang, "Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries", A Science Partner Journal, Vol. 10, No. 1, pp 2639-5274, (2019).
11 A. Mohammed, G. A. E. E. Yousif, A. A. Ahmed, D. S. Ahmed, M. H. Alotaibi, "Protection of Poly(Vinyl Chloride) Films against Photodegradation Using Various Valsartan Tin Complexes", Polymers, Vol. 12, No. 969, pp. 1-8, (2020).
12 D. Fraenkel, "Electrolytic Nature of Aqueous Sulfuric Acid. 1. Activity", Journal of Physical Chemistry B, Vol. 116, No.10, pp 11662-11677, (2012).   DOI
13 J. Xu, Z. L. Xu, "Poly(vinyl chloride) (PVC) hollow fiber ultrafiltration membranes prepared from PVC/additives/solvent." Journal of Membrane Science, Vol. 208, pp 203-212, (2002).   DOI
14 J.Y. Xi, Z.H. Wu, X.P. Qiu ,L.Q. Chen. "Nafion/SiO2 hybrid membrane for vanadium redox flow battery." Journal of Power Sources, Vol. 166, pp 531-536, (2007).   DOI
15 X.L. Luo, Z.Z. Lu, J.Y. Xi, Z.H. Wu, W.T. Zhu, L.Q. Chen, X.P. Qiu. "nfluences of Permeation of Vanadium Ions through PVDF-g-PSSA Membranes on Performances of Vanadium Redox Flow Batteries." Journal of Physical Chemistry B, Vol. 109, pp 20310-20314, (2005).   DOI
16 M. Khayet, M.C. G. Payo, F.A. Qusay , M.A. Zubaidy. "Structural and performance studies of poly(vinyl chloride) hollow fiber membranes prepared at different air gap lengths." Journal of Membrane Science, Vol. 330, pp 30-39, (2009).   DOI
17 E. Kovalska, C. Kocabas, "Organic electrolytes for graphene-based supercapacitor: Liquid, gel or solid", Materialstoday Communications, Vol. 7, No. 1, pp 155-160, (2016).