DOI QR코드

DOI QR Code

Cellulose Nanocrystals Incorporated Poly(arylene piperidinium) Anion Exchange Mixed Matrix Membranes

셀룰로오스 나노 결정을 도입한 폴리아릴렌 피페리디늄 음이온 교환 복합매질분리막

  • Da Hye Sim (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • Young Park (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • Young-Woo Choi (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • Jung Tae Park (Department of Integrated Display Engineering, Yonsei University) ;
  • Jae Hun Lee (Hydrogen Research Department, Korea Institute of Energy Research)
  • 심다혜 (한국에너지기술연구원 수소연구단) ;
  • 박현정 (한국에너지기술연구원 수소연구단) ;
  • 최영우 (한국에너지기술연구원 수소연구단) ;
  • 박정태 (연세대학교 디스플레이융합공학과) ;
  • 이재훈 (한국에너지기술연구원 수소연구단)
  • Received : 2024.03.28
  • Accepted : 2024.04.16
  • Published : 2024.04.30

Abstract

Anion exchange membranes (AEMs) are essential components in water electrolysis systems, serving to physically separate the generated hydrogen and oxygen gases while enabling the selective transport of hydroxide ions between electrodes. Key characteristics sought in AEMs include high ion conductivity and robust chemical and mechanical stability in alkaline. In this study, quaternized Poly(terphenyl piperidinium)/cellulose nanocrystals (qPTP/CNC) mixed matrix membrane was fabricated. The polymer matrix, PTP, was synthesized via super-acid polymerization, known for its excellent ion conductivity and alkaline durability. The qPTP/CNC membrane showed a dense and uniform morphology without significant voids or large aggregates at the polymer-nanoparticle interface. The qPTP/CNC membrane containing 2 wt% CNC demonstrated a high ion exchange capacity of 1.90 mmol/g, coupled with low water uptake (9.09%) and swelling ratio (5.56%). Additionally, the qPTP/CNC membrane showed significantly lower resistance and superior alkaline stability (384 hours at 50℃ in 1 M KOH) compared to the commercial FAA-3-50 membrane. These results highlight the potential of hydrophilic additive CNC in enhancing ion conductivity and alkaline durability of ion exchange membranes.

음이온 교환막은 수전해 시스템에서 매우 중요한 역할을 하며, 생성된 수소와 산소 기체를 물리적으로 분리할 뿐만 아니라 전극 사이에서 수산화 이온의 선택적인 전달을 용이하게 한다. 음이온 교환막에 요구되는 특성은 수산화 이온에 대한 높은 전도도와 알칼리 환경에서의 화학적/기계적 안정성 등이 있다. 본 연구에서는 셀룰로오스 나노 크리스탈이 포함된 poly(terphenyl piperidinium) (qPTP/CNC) 복합매질분리막을 제조하였다. 고분자 매질로 사용된 poly(terphenyl piperidinium)은 super-acid 중합법을 통해 제조되었으며 이온전도성과 알칼라인 내구성이 뛰어난 소재로 알려져 있다. qPTP/CNC 분리막의 구조는 고분자와 나노 입자 계면의 공극이나 큰 응집체가 없는 조밀하고 균일한 형태를 나타냈다. CNC 나노 입자가 2wt% 첨가된 qPTP/CNC 분리막은 높은 이온교환용량(1.90 mmol/g)과 낮은 함수율(9.09%) 및 팽윤도(5.56%)를 보였다. 또한, 복합막은 수전해 작동 환경인 50℃ 1 M KOH에서 상용 FAA-3-50 분리막에 비해 월등히 낮은 저항과 우수한 알칼라인 내구성(384시간)을 달성했다. 이러한 결과는 친수성 첨가제인 CNC가 음이온 교환막의 이온 전도 특성과 알칼라인 내구성 향상에 기여할 수 있음을 보고하였다.

Keywords

Acknowledgement

This research was supported by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) (20218520040040 and 20203030040030).

References

  1. K. F. L. Hagesteijn, S. Jiang, and B. P. Ladewig, "A review of the synthesis and characterization of anion exchange membranes", J. Mater. Sci., 53, 11131 (2018).
  2. H. A. Miller, K. Bouzek, J. Hnat, S. Loos, C. I. Bernacker, T. Weissgarber, L. Rontzsch, and J. Meier-Haack, "Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions", Sustain. Energy Fuels, 4, 2114 (2020).
  3. S. A. Lee, J. Kim, K. C. Kwon, S. H. Park, and H. W. Jang, "Anion exchange membrane water electrolysis for sustainable large-scale hydrogen production", Carbon Neutralization, 1, 26 (2022).
  4. I. Vincent and D. Bessarabov, "Low cost hydrogen production by anion exchange membrane electrolysis: A review", Renew. Sustain. Energy Rev., 81, 1690 (2018).
  5. N. Du, C. Roy, R. Peach, M. Turnbull, S. Thiele, and C. Bock, "Anion-exchange membrane water electrolyzers", Chem. Rev., 122, 11830 (2022).
  6. D. Pan, T. H. Pham, and P. Jannasch, "Poly(arylene piperidine) anion exchange membranes with tunable N-alicyclic quaternary ammonium side chains", ACS Appl. Energy Mater., 4, 11652 (2021).
  7. M. Mandal, G. Huang, N. U. Hassan, W. E. Mustain, and P. A. Kohl, "Poly(norbornene) anion conductive membranes: Homopolymer, block copolymer and random copolymer properties and performance", J. Mater. Chem. A, 8, 17568 (2020).
  8. N. Yu, J. Dong, H. Li, T. Wang, and J. Yang, "Improving the performance of quaternized SEBS based anion exchange membranes by adjusting the functional group and side chain structure", Eur. Polym. J., 154, 110528 (2021).
  9. T. H. Pham, J. S. Olsson, and P. Jannasch, "Poly(arylene alkylene)s with pendant N-spirocyclic quaternary ammonium cations for anion exchange membranes", J. Mater. Chem. A, 6, 16537 (2018).
  10. R. Vinodh, S. S. Kalanur, S. K. Natarajan, and B. G. Pollet, "Recent advancements of polymeric membranes in anion exchange membrane water electrolyzer (AEMWE): A critical review", Polymers, 15, 2144 (2023).
  11. L. Liu, L. Bai, Z. Liu, S. Miao, J. Pan, L. Shen, Y. Shi, and N. Li, "Side-chain structural engineering on poly(terphenyl piperidinium) anion exchange membrane for water electrolysers", J. Membr. Sci., 665, 121135 (2023).
  12. J. S. Olsson, T. H. Pham, and P. Jannasch, "Tuning poly(arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking", J. Membr. Sci., 578, 183 (2019).
  13. S. Thangarasu, T. H. Oh, "Recent developments on bioinspired cellulose containing polymer nanocomposite cation and anion exchange membranes for fuel cells (PEMFC and AFC)", Polymers, 14, 5248 (2022).
  14. X. Cheng, J. Wang, Y. Liao, C. Li, and Z. Wei, "Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal", ACS Appl. Mater. Interfaces, 10, 23774 (2018).
  15. G. Das, B. J. Park, J. Kim, D. Kang, and H. H. Yoon, "Quaternized cellulose and graphene oxide crosslinked polyphenylene oxide based anion exchange membrane", Sci. Rep., 9, 9572 (2019).
  16. M. Mandal, "Recent advancement on anion exchange membranes for fuel cell and water electrolysis", ChemElectroChem, 8, 36 (2021).
  17. W. Tang, T. Mu, X. Che, J. Dong, and J. Yang, "Highly selective anion exchange membrane based on quaternized poly(triphenyl piperidine) for the vanadium redox flow battery", ACS Sustain. Chem. Eng., 9, 14297 (2021).
  18. R. Vinodh and D. Sangeetha, "Comparative study of composite membranes from nano-matal-oxide-incorporated polymer electrolytes for direct methanol alkaline membrane fuel cells", J. Appl. Polym. Sci., 128, 1930 (2013).
  19. Z. Kassab, I. Kassem, H. Hannache, R. Bouhfid, A. E. K. Qaiss, and M. El Achaby, "Tomato plant residue as new renewable source for cellulose production: extraction of cellulose nanocrystals with different surface functionalities", Cellulose, 27, 4287 (2020).
  20. J. S. Olsson, T. H. Pham, and P. Jannasch, "Poly(arylene piperidinium) hydroxide ion exchange membranes: synthesis, alkaline stability, and conductivity", Adv. Funct. Mater., 28, 1702758 (2018).
  21. S. A. Ross and G. Lowe, "Downfield displacement of the NMR signal of water in deuterated dimethylsulfoxide by the addition of deuterated trifluoroacetic acid", Tetrahedron Lett., 41, 3225 (2000).
  22. A. D. de Oliveira and C. A. G. Beatrice, "Polymer nanocomposites with different types of nanofiller", Nanocomposites - Recent Evolutions, p. 103, Intech Open, London, United Kingdom (2018).
  23. M. I. Khan, A. N. Mondal, B. Tong, C. Jiang, K. Emmanuel, Z. Yang, L. Wu, and T. Xu, "Development of BPPO-based anion exchange membranes for electrodialysis desalination applications", Desalination, 391, 61 (2016).
  24. J. Zheng, J. Wang, S. Zhang, T. Yuan, and H. Yang, "Synthesis of novel cardo poly(arylene ether sulfone)s with bulky and rigid side chains for direct methanol fuel cells", J. Power Sources, 245, 1005 (2014).
  25. L. Zhu, X. Yu, X. Peng, T. J. Zimudzi, N. Saikia, M.T. Kwasny, S. Song, D. I. Kushner, Z. Fu, G. N. Tew, W. E. Mustain, M. A. Yandrasits, and M. A. Hickner, "Poly(olefin)-based anion exchange membranes prepared using ziegler-natta polymerization", Macromolecules, 52, 4030 (2019).
  26. M. Zeng, X. He, J. Wen, G. Zhang, H. Zhang, H. Feng, Y. Qian, and M. Li, "N-Methylquinuclidinium-based anion exchange membrane with ultrahigh alkaline stability", Adv. Mater., 35, 2306675 (2023).
  27. Y. Ma, C. Hu, G. Yi, Z. Jiang, X. Su, Q. Liu, J. Y. Lee, S. Y. Lee, Y. M. Lee, and Q. Zhang, "Durable multiblock poly(biphenyl alkylene) anion exchange membranes with microphase separation for hydrogen energy conversion", Angew. Chem. Int. Ed., 62, e202311509 (2023).