Browse > Article
http://dx.doi.org/10.5338/KJEA.2008.27.4.343

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances  

Lee, In-Bog (National Institute of Horticultural and Herbal Science, RDA)
Kang, Seok-Beom (National Institute of Horticultural and Herbal Science, RDA)
Park, Jin-Myeon (National Institute of Horticultural and Herbal Science, RDA)
Publication Information
Korean Journal of Environmental Agriculture / v.27, no.4, 2008 , pp. 343-348 More about this Journal
Abstract
To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.
Keywords
Green manure; Organic farming; Cropping system; Nutrient budget;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Nguyen, M. L., Haynes, R. J. and Goh, K. M. (1995) Nutrient budgets and status in three pairs of conventional and alternative mixed cropping farms in Canterbury, New Zealand, Agric. Ecosystem and Environ. 52, 149-162   DOI   ScienceOn
2 Meisinger, J. J., Hargrove, W. L., Mikkelsen, R. L., Williams, J. R. and Benson, V. W. (1991) Effects of cover crops on groundwater quality, pp. 57-68. In: Hargrove, W. L. (ed.), Cover crops for clean water, Soil and Water Conserv. Soc., Ankeny, IA
3 Wagger, M. G. (1989) Time of desiccation effects on plant composition and subsequent nitrogen release from several winter annual cover crops, Agron. J. 81, 236-241   DOI
4 Clark, A. J. (1993) Managing hairy vetch/cereal rye cover crop mixtures for nitrogen and water in no-tillage corn, Ph.D. diss. Univ. of Maryland, College Park (Diss. Abstr. 9407617)
5 Sullivan, P. G., Parrish, D. J. and Luna, J. M. (1991) Cover crop contributions to N supply and water conservation in corn production, Am. J. Altern. Agric. 6, 106-113   DOI
6 Dang, M. V. (2005) Soil-plant nutrient balance of tea crops in the northern mountainous region, Vietnam, Agric. Ecosystem and Environ. 105, 413-418   DOI   ScienceOn
7 Allison, F. E. (1966) The fate of nitrogen applied to soils, Adv. Agron. 18, 219-258   DOI
8 Sainju, U, M., Singh, B. P. and Yaffa, S. (1999) Tomato yield and soil quality as influenced by tillage, cover cropping, and nitrogen fertilization, pp. 104-113. In: Hook, J. E. (ed.), Proceedings of the 22nd Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Tifton, GA, July 6-8. Spec. Pub. 95. Agric. Exp. Sta., Athens, GA
9 Shipley, P. R., Meisinger, J. J. and Cecker, A. M. (1992) Conserving residual corn fertilizer nitrogen with winter cover crops, Agron. J. 84, 869-876   DOI
10 Lee, I. B., Park, J. M., Lim, J. H. and Hwang, K. S. (2006) Growth and yield responses of the following tomato crop according to incorporation of green manures into soil, Kor. Soc. of Agric. and Environ. 25, 346-351   과학기술학회마을   DOI   ScienceOn
11 Zhao, F., McGrath, S. P. and Crosland, A. R. (1994) Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICPAES), Commun. Soil Sci. Plant Anal. 25, 407-418   DOI   ScienceOn
12 Mueller, T. and Thorup-Kristensen, K. (2001) N-fixation of selected green manure plants in an organic crop rotation, Biol. Agric. Hort. 18, 345-363   DOI   ScienceOn
13 Boquet, D. J., Hutchison, R. L. and Paxton, K. W. (2003) Conservation tillage, cover crop BMP's for cotton, La. Agric. 46, 32-33
14 Decker, A. M., Clark, A. J. and McIntosh, M. S. (1994) Legume cover crop contributions to no tillage corn production, Agron J. 86, 126-135   DOI   ScienceOn
15 Ebelhar, S. A., Frye, W. W. and Blevins, R. L. (1984) Nitrogen from legume cover crops for no-tillage corn, Agron. J. 76, 51-55   DOI
16 Abudal-Baki, A. A., Teasdale. J. R., Korcak, J. R., Chirwood, D. J. and Huettel, R. N. (1996) Freshmarket tomato production in a low-input alternative system using cover crop mulch, HortSci. 31, 65-69
17 Abudal-Baki, A. A. and Teasdale. J. R. (1993) A no-tillage tomato production system using hairy vetch and subterranean clover mulches, Hort. Sci. 28, 106-108
18 Meetu, O. P. and Morris, R. A. (1988) In: Green manure in rice farming, pp. 209-222. Int. Rice Res. Inst., Los Banos, Philippines
19 Creamer, N. G., Bennett, M. A., Stinner, B. R. and Cardina, J. (1996) A comparison of four processing tomato production systems differing in cover crop and chemical inputs, Am. Soc. Hort. Sci. 121, 559-568
20 Clark, A. J., Decker. A. M., Meisinger, J. J. and McIntosh, M. S. (1997) Kill date of vetch, rye, and a vetch-rye mixture: I. Cover crop and corn nitrogen, Agron. J. 89, 427-434   DOI   ScienceOn
21 RDA(Rural Development Administration) (1999) Recommended standard fertilization for crops, RDA, Korea
22 RDA(Rural Development Administration) (1988) Method of Soil Chemical Analysis, RDA, Korea
23 Lanyon, L. E. and Beegle, D. B. (1989) The role of on-farm nutrient balance assessments in an integrated approach to nutrient management, J. Soil Water Conserv. 44, 164-168
24 Carter, M. R. (1993) In: Soil sampling and methods of analysis, pp. 459-471. Can. Soc. of Soil Sci., Lewis Publishers, Boca Raton, USA
25 Cho, Y. S. (2003) Nitrogen fixation and growth characteristics three legume cover crops in notillage paddy field, Kor. J. Crop Sci. 48, 305-315