• 제목/요약/키워드: uplift performance

검색결과 51건 처리시간 0.015초

Study on uplift performance of stud connector in steel-concrete composite structures

  • Ju, Xiaochen;Zeng, Zhibin
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1279-1290
    • /
    • 2015
  • The main role of studs, which act as connectors of the steel-concrete composite structures, is to ensure that the steel and the concrete work together as a whole. The studs in steel-concrete composite structures bear the shearing force in the majority of cases, but in certain locations, such as the mid-span of a simply supported composite beam, the studs bear axial uplift force. The previous studies mainly focused on the shearing performance of the stud by some experimental and theoretical effort. However, rare studies involved the uplift performance of studs. In this paper, the single stud uplift test on 10 composite specimens was performed. Meanwhile, based on the test, numerical analysis was introduced to simulate the concrete damage process due to the stud uplifted from concrete. The static ultimate bearing capacity, under which the stud connector was pulled out from the damaged reinforced concrete, is much larger than the cyclic ultimate bearing capacity, under which the weld joint between stud and steel plate fractured. According to the fatigue test results of 7 specimens, the fatigue S-N curve of the construction detail after minus 2 times standard deviation is $logN=24.011-9.171\;log{\Delta}{\sigma}$, the fatigue strength corresponding to $2{\times}10^6$ cycles is 85.33 MPa.

지반 액상화에 의한 지중 매설구조물의 부상: 원심모형시험 및 내진성능설계 (Liquefaction-Induced Uplift of Geotechnical Buried Structures: Centrifuge Modeling and Seismic Performance-Based Design)

  • 강기천;이아이 수수무
    • 한국지반공학회논문집
    • /
    • 제28권10호
    • /
    • pp.5-16
    • /
    • 2012
  • 지진에 의해 지반의 액상화가 발생하면 상대적으로 가벼운 지중 매설구조물은 부상하는 현상이 발생하며 이러한 피해는 과거 여러 지진에서 계속해서 보고되고 있다. Koseki et al.(1997a)에 의해 제안된 안전율은 액상화 지반에서 매설구조물의 부상 유무를 판단할 수 있으며 현재 내진설계에 이용되고 있지만 부상량의 "정량적인" 예측은 불가능하며 아직 확립되지 않았다. 지중 매설구조물의 부상량의 예측은 구조물의 성능성과 관련 있는 내진성능설계에 있어서 중요한 요소가 된다(ISO23469, 2005). 따라서 지중 매설구조물에 대한 내진성능평가를 위해 실용적인 부상량의 평가가 필요하다. 지중 매설구조물의 부상량을 예측하기 위한 방법으로 구조물에 작용하는 수직방향 힘의 평형을 바탕으로 간이법이 정식화 되었고(Tobita et al., 2012), 간이법의 신뢰성 확보를 위해 원심모형시험 결과 및 2004년 니가타켄츄에츠 지진시의 매설구조물 피해와 비교하였다. 본 연구에서 제안된 내진성능설계 흐름도는 뒷채움의 액상화 판정뿐만 아니라, 지중 매설구조물의 부상량 예측도 가능하다.

Application of numerical models to determine wind uplift ratings of roofs

  • Baskaran, A.;Borujerdi, J.
    • Wind and Structures
    • /
    • 제4권3호
    • /
    • pp.213-226
    • /
    • 2001
  • Wind uplift rating of roofing systems is based on standardised test methods. Roof specimens are placed in an apparatus with specified table size (length and width) then subjected to the required wind load cycle. Currently, there is no consensus on the table size to be used by these testing protocols in spite of the fact that a table size plays a significant role in evaluating the performance. This paper presents a study with the objective to investigate the impact of table size on the performance of roofing systems. To achieve this purpose, extensive numerical experiments using the finite element method have been conducted to investigate the performance of roofing systems subjected to wind uplift pressures. Numerical results were compared with results obtained from experimental work to benchmark the numerical modeling. Required table size and curves for the determinations of appropriate correction factors are suggested. This has been completed for various test configurations with thermoplastic waterproofing membranes. Development of correction factors for assemblies with thermoset and modified bituminous membranes are in progress. Generalization of the correction factors and its usage for wind uplift rating of roofs will be the focus of a future paper.

Numerical study on the moment capacity of zed-section purlins under uplift loading

  • Zhu, Jue;Chen, Jian-Kang;Ren, Chong
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.147-161
    • /
    • 2014
  • In this paper a nonlinear finite element analysis model is established for cold-formed steel zed-section purlins subjected to uplift loading. In the model, the lateral and rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction and a rotational spring restraint applied at the mid of the upper flange where the sheeting is fixed. The analyses are performed by considering both geometrical and material nonlinearities. The influences of the rotational spring stiffness and initial geometrical imperfections on the uplift loading capacity of the purlin are investigated numerically. It is found that the rotational spring stiffness has significant influence on the purlin performance. However, the influence of the initial geometric imperfections on the purlin performance is found only in purlins of medium or long length with no or low rotational spring stiffness.

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • 제27권2호
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

Application of numerical models to evaluate wind uplift ratings of roofs: Part II

  • Baskaran, A.;Molleti, S.
    • Wind and Structures
    • /
    • 제8권3호
    • /
    • pp.213-233
    • /
    • 2005
  • Wind uplift rating of roofing systems is based on standardized test methods. Roof specimens are placed in an apparatus with a specified table size (length and width) then subjected to the required wind load cycle. Currently, there is no consensus on the table size to be used by these testing protocols in spite of the fact that the table size plays a significant role in wind uplift performance. Part I of this paper presented a study with the objective to investigate the impact of table size on the performance of roofing systems. To achieve this purpose, extensive numerical experiments using the finite element method have been conducted and benchmarked with results obtained from the experimental work. The present contribution is a continuation of the previous research and can be divided into two parts: (1) Undertake additional numerical simulations for wider membranes that were not addressed in the previous works. Due to the advancement in membrane technology, wider membranes are now available in the market and are used in commercial roofing practice as it reduces installation cost and (2) Formulate a logical step to combine and generalize over 400 numerical tests and experiments on various roofing configurations and develop correction factors such that it can be of practical use to determine the wind uplift resistance of roofs.

아치 구조물의 지진응답 제어를 위한 들림방지 면진장치의 적용 (Application of Seismic Base Isolation With Anti-Uplift Device for Arch Structure)

  • 김기철;이준호
    • 한국공간구조학회논문집
    • /
    • 제20권4호
    • /
    • pp.169-176
    • /
    • 2020
  • When an unexpected excessive seismic load is applied to the base isolation of arch structure, the seismic displacement of the base isolation may be very large beyond the limit displacement of base isolation. These excessive displacement of the base isolation causes a large displacement in the upper structure and large displacement of upper structure causes structural damage. Therefore, in order to limit the seismic displacement response of the base isolation, it is necessary to install an additional device such as an anti-uplift device to the base isolation. In this study, the installation direction of the base isolation and the control performance of the base isolation installed anti-uplift device were investigated. The installation direction of the base isolation of the arch structure is determined by considering the horizontal and vertical reaction forces of the arch structure. In addition, the separation distance of the anti-uplift device is determined in consideration of the design displacement of the base isolation and the displacement of the arch structure.

터널구간 팬터그래프와 전차선간 동적성능 검측장치 구현 (Implement of Dynamic Performance Measurement System Between Pantograph and Contact wire in Tunnel)

  • 박영;박철민;이기원;권삼영
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1732-1736
    • /
    • 2012
  • To increase speed up of train, in the field of catenary system, it is necessary to develop of new monitoring methods for dynamic interaction between pantograph and contact wire. Also, there is a need to develop technologies that constantly measure are from various railway structure such as uplift of contact wire, vibration of catenary, dynamic strain of contact line in tunnel. In this paper condition monitoring systems for dynamic performance of catenary systems in tunnel were proposed. An advanced method and results of field tests using high speed camera for monitoring of vertical upward movement of the grooved contact wire due to the force produced from the pantograph were presented. The proposed uplift measurement system of contact wire is expected to enhance precision of current collection quality performance assessment methods at high-speed lines.

전차선 압상량 검출을 위한 최적 시스템 구현 (Implementation of Optimization of the Uplift Amount Measurement System of Overhead Contact Line)

  • 박영;이기원;박철민;권삼영
    • 전기학회논문지
    • /
    • 제62권6호
    • /
    • pp.886-890
    • /
    • 2013
  • Uplift of contact wire and dynamic characteristics between pantograph and contact wire are key interaction performance of OCS (Overhead Catenary System). These two evaluation items are the approval criteria for the performance between OCS and pantograph. A telemetry system or DAQ (Data Acquisition) System based on wireless communication make it monitor a dynamic behavior which is measured directly in a 25 kv like parts. While permissible working time is too short time to install is too long. In this paper, it is described that optimization the telemetry measurement system for OCS and increasing accuracy, easy adaptation, and faster handling can be also achieved through the study.

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.