• Title/Summary/Keyword: unmanned ground vehicle

Search Result 333, Processing Time 0.028 seconds

Ground Test and Evaluation of a Flight Control Systemfor Unmanned Aerial Vehicles

  • Suk, Jin-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.57-63
    • /
    • 2004
  • UAV(Unmanned Aerial Vehicle) has become one of the most popularmilitary/commercial aerial robots in the new millennium. In spite of all theadvantages that UAVs inherently have, it is not an easv job to develop a UAVbecause it requires very systematic and complete approaches in full developmentenvelop. The ground test and evaluation phase has the utmost importance in thesense that a well-developed system can be best verified on the ground. In addition,many of the aircraft crashes in the flight tests were resulted from the incompletedevelopment procedure. In this research, a verification procedure of the wholeairbome integrated system was conducted including the flight management system.An airbome flight control computer(FCC) senses the extemal environment from thepehpheral devices and sends the control signal to the actuating system using theassigned control logic and flight test strategy. A ground test station controls themission during the test while the downlink data are transferred from the flightmanagement computer using the serial communication interface. The pilot controlbox also applies additional manual actuating commands. The whole system wastested/verified on the wind-tunnel system, which gave a good pitch controlperformance with a preUspecified flight test procedure. The ground test systemguarantees the performance of fundamental functions of airbome electronic systemfor the future flight tests.

Acquiring Precise Coordinates of Ground Targets through GCP Geometric Correction of Captured Images in UAS (무인 항공 시스템에서 촬영 영상의 GCP 기하보정을 통한 정밀한 지상 표적 좌표 획득 방법)

  • Namwon An;Kyung-Mee Lim;So-Young Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • Acquiring precise coordinates of ground targets can be regarded as the key mission of the tactical-level military UAS(Unmanned Aerial System) operations. The coordinates deviations for the ground targets estimated from UAV (Unmanned Aerial Vehicle) images may depend on the sensor specifications and slant ranges between UAV and ground targets. It has an order of several tens to hundreds of meters for typical tactical UAV mission scenarios. In this paper, we propose a scheme that precisely acquires target coordinates from UAS by mapping image pixels to geographical coordinates based on GCP(Ground Control Points). This scheme was implemented and tested from ground control station for UAS. We took images of targets of which exact location is known and acquired the target coordinates using our proposed scheme. The experimental results showed that errors of the acquired coordinates remained within an order of several meters and the coordinates accuracy was significantly improved.

UAV based Wireless Ad hoc Network Performance Analysis (공중무인기 기반의 무선애드혹 네트워크 성능 분석)

  • Chun, Jeong-myong;Ha, Dong-hun;Park, Jae-seong;Yoon, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.123-125
    • /
    • 2015
  • Wireless ad hoc network which is comprised of wireless nodes that have the limited communication range is utilized to monitoring disaster area, tracing object, and tactical system. But in the case of wireless node on the ground, a network performance decrease because wireless channel is affected from obstacle or the node deployment is restricted. In this paper, we consider wireless network based on UAV(Unmanned Aerial Vehicle) which has little spatial constraint and quickly deploy a position. We implement test-bed included ground nodes and UAV, and measure throughput and PDR(Packet Delivery Ratio) according to the usage of UAV. We show that network performance is improved by relaying data on UAV.

  • PDF

Study on a Waypoint Tracking Algorithm for Unmanned Surface Vehicle (USV) (무인수상선을 위한 경유점 추적 제어 알고리즘에 관한 연구)

  • Son, Nam-Sun;Yoon, Hyeon-Kyu
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • A waypoint tracking algorithm(WTA) is designed for Unmanned Surface Vehicle(USV) in which water-jet system is installed for propulsion To control the heading of USV for waypoint tracking, the steering nozzle of water-jet need, to be controlled. Firstly, target heading is calculated by using the position information of waypoints input from the land control center. Secondly, the command for the steering nozzle of water-jet is calculated in real time by using the heading and the rate-of-turn( ROT) from magnetic compass, In this study, in order to consider the drift angle due to external disturbance such as wind and wave, the course of ground( COG) can be used instead of heading at higher speed than a certain value, To test the performance of newly-designed WTA, the tests were carried out in actual sea area near Gwang-an bridge of Busan. In this paper, the sea trial test results from WTA are analyzed and compared with those from manual control and those from commercial controller.

A Study on UAV Tracking Method with Anti-Jamming Function for Forest Resource Management (산림자원 관리를 위한 항 재밍 기능을 보유한 무인항공기국 추적방법에 관한 연구)

  • Jin-Woo Jung;Yong-Gyu Shin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1245-1258
    • /
    • 2023
  • To efficiently manage forest resources, it is essential to deploy multiple unmanned aerial vehicles equipped with various sensors simultaneously. Consequently, the ground control station antenna should not only maintain continuous tracking of the target station but also minimize the impact of radio interference on other unmanned aerial vehicle stations. In this paper, we presented beam forming techniques based on the VPR algorithm within a ground control station constructed using a phased array antenna system. Through simulation experiments in diverse unmanned aerial vehicle operating environments, it was demonstrated that the presented method enables not only the continuous tracking of operational unmanned aerial vehicles but also the suppression of radio interference by establishing a continuous pattern null for multiple operational radio interference sources.

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF

A Method to Determine the Weights for Mission Type based Global Path Planning (임무유형 기반 전역경로계획을 위한 가중치 결정방법)

  • Park, Won-Ik;Lee, Ho-Joo;Kim, Do-Jong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.711-717
    • /
    • 2014
  • Global path planning for autonomous driving of unmanned ground vehicle is essential. When setting global path planning, its accuracy and effectiveness is increased if useful information such as terrain type of driving route has been reflected on global path planning. As a method to reflect the terrain type, there is a method to perform global path planning by applying the weight to each terrain type. At this time, how to assign appropriate weights corresponding to the terrain type is more important than anything. In this paper, we proposed a method to determine the weight for terrain type that may affect the results of global path planning. Moreover, we presented effective operation method and design results(GUI) to check the possibility of the use of the proposed method.

Terrain Cover Classification Technique Based on Support Vector Machine (Support Vector Machine 기반 지형분류 기법)

  • Sung, Gi-Yeul;Park, Joon-Sung;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.55-59
    • /
    • 2008
  • For effective mobility control of UGV(unmanned ground vehicle), the terrain cover classification is an important component as well as terrain geometry recognition and obstacle detection. The vision based terrain cover classification algorithm consists of pre-processing, feature extraction, classification and post-processing. In this paper, we present a method to classify terrain covers based on the color and texture information. The color space conversion is performed for the pre-processing, the wavelet transform is applied for feature extraction, and the SVM(support vector machine) is applied for the classifier. Experimental results show that the proposed algorithm has a promising classification performance.

Design Automation for Heterogeneous SUGVs with UML Profile Mechanism (UML 프로파일 메커니즘을 이용한 이종 소형 무인지상차량 설계 자동화)

  • Kim, Woo-Yeol;Son, Hyun-Seung;Kim, R. Young-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.705-715
    • /
    • 2008
  • Today raises its head on the issue of interoperability caused by the complexity of the embedded software and the diverse development environment about SUGV(Small Unmanned Ground Vehicle). So, we propose to adopt the original MDA mechanism for this heterogeneous embedded development. To solve this problem, we apply for developing SUGV with MDA(Model Driven Architecture) using the original UML profile mechanism. Through this method, it can be semi-automatically transformed into TSM(Target specific model) after modeling TIM(Target Independent Model). Then we can also automatically generate the heterogeneous source codes. Therefore it will be reduced the development cycle and effort of the heterogeneous systems. We verify the benefits of our proposed approach and the reliability through analyzing the generated codes.