• Title/Summary/Keyword: unmanned control system

Search Result 748, Processing Time 0.027 seconds

Development of an Unmanned Test System Based on Forklift for Mast Operation Durability (지게차 마스트 작동내구를 위한 실차 기반 무인시험장치 개발)

  • Cho, Jae-Hong;Na, Seon-Jun;Kim, Min-Seok;Park, Myeong-Kwan
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.70-76
    • /
    • 2022
  • In this paper, we develops an unmanned test system for the purpose of realizing an actual forklift-based test-bed for the operation durability of the forklift mast. First, two robot actuators were applied to the lever to replace lever manipulation of the operator. For detecting the height of the fork and the tilt angle of the mast, the laser displacement sensor and the inclinometer were installed to the forklift. Next, the embedded control system was used to control the robot actuator with reference to test mode. Experimental evaluation verified that developed test system was effective and practical for the viewpoint of the repeatability of the test mode.

A Method of System Effectiveness Analysis for Remote-Operated Unmanned Ground Vehicles Using OneSAF (OneSAF를 이용한 원격조종 지상무인차량 체계효과분석 방법)

  • Han, Sang Woo;Pyun, Jai Jeong;Cho, Hyunsik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.388-395
    • /
    • 2014
  • Nowadays unmanned ground systems are used in supporting of surveillance and explosive ordnance disposal. Also, we expect that will be used to remarkably enhance combat capability through network-based cooperative operations with other combat systems. In order to effectively develop those unmanned systems, we needs a systematic method to analyze combat effectiveness and validate required operation capabilities. In this paper, we propose a practical approach to simulate remote-operated unmanned ground systems by using OneSAF, an US-Army simulation framework. First of all, we design a simulation model of unmanned system by integrating with core components for wireless communications and remote control of mobility and fire. Next, we extend OneSAF functionality to create communication links that connects a remote controller with an unmanned vehicle and define a simulated behavior to operate unmanned vehicles via the communication links. Finally, we demonstrate the feasibility of the proposed model within OneSAF and summarize system effectiveness analysis results.

Unmanned Forklift Docking Using Two Cameras (상하 카메라를 이용한 무인 지게차의 도킹)

  • Yi, Sang-Jin;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.10
    • /
    • pp.930-935
    • /
    • 2015
  • An unmanned forklift requires precise positioning and pallet detection. Therefore, conventional unmanned forklifts use high-cost sensors to find the exact position of the pallet. In this study, a docking algorithm with two cameras is proposed. The proposed method uses vision data to extract the angle difference between the pallet and the forklift. Then the control law is derived from the extracted angle for successful docking. The extracted angle is compared with the actual angle in the real environment. The control law is tested with the Lyapunov stability test and Routh-Hurwitz stability criterion. Through various experiments, the proposed docking algorithm showed the success rate high enough for real-life applications.

Airworthiness Standard Analysis about a Korea Fixed Wing Unmanned Aircraft (국내 고정익 무인항공기 감항인증 기술기준분석)

  • Lim, Joon-Wan;Roh, Jin-Chul;Ko, Joon Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.654-661
    • /
    • 2016
  • An unmanned aircraft refers to an aircraft which carries no human pilot and is operated under remote control or in autonomous operational mode. An unmanned aircraft system consist of a one system which include UAV(s), UAV control station and data link, etc. As the UAVs can perform the dull, dangerous and difficult missions, various kinds of UAVs with different sizes and weights have been developed and operated for both civil and military areas. It is important to develop the airworthiness certification criteria of the UAVs to minimize the risks of fatal impacts on human life and environment and to achieve the equivalent level of safety to the manned aircraft. Analysis of the KAS Part 23 and STANAG 4671 can provide guidelines for the generation of the airworthiness certification criteria for the UAVs in civil application.

Research of the Unmanned Vehicle Control and Modeling for Lane Tracking (차선인식을 위한 무인자동차의 차량제어 및 모델링에 관한 연구)

  • 김상겸;임하영;김정하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.213-221
    • /
    • 2003
  • This paper describes a method of lane tracking by means of a vision system which includes vehicle control and modeling. Lane tracking is considered one of the important technologies in an unmanned vehicle and mobile robot system. The current position and condition of the vehicle are calculated from an image processing method by a CCD camera. We deal with lane tracking as follows. First, vehicle control is included in the road model, and lateral and longitudinal controls. Second, the image processing method deals with the lane detection method, image processing algerian, and filtering method. Finally, this paper proposes a correct method for lane detection through a vehicle test by wireless data communication.

System Identification and Stability Evaluation of an Unmanned Aerial Vehicle From Automated Flight Tests

  • Jinyoung Suk;Lee, Younsaeng;Kim, Seungjoo;Hueonjoon Koo;Kim, Jongseong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.654-667
    • /
    • 2003
  • This paper presents a consequence of the systematic approach to identify the aerodynamic parameters of an unmanned aerial vehicle (UAV) equipped with the automatic flight control system. A 3-2-1-1 excitation is applied for the longitudinal mode while a multi-step input is applied for lateral/directional excitation. Optimal time step for excitation is sought to provide the broad input bandwidth. A fully automated programmed flight test method provides high-quality flight data for system identification using the flight control computer with longitudinal and lateral/directional autopilots, which enable the separation of each motion during the flight test. The accuracy of the longitudinal system identification is improved by an additional use of the closed-loop flight test data. A constrained optimization scheme is applied to estimate the aerodynamic coefficients that best describe the time response of the vehicle. An appropriate weighting function is introduced to balance the flight modes. As a result, concurrent system models are obtained for a wide envelope of both longitudinal and lateral/directional flight maneuvers while maintaining the physical meanings of each parameter.

Development of Vision Based Steering System for Unmanned Vehicle Using Robust Control

  • Jeong, Seung-Gweon;Lee, Chun-Han;Park, Gun-Hong;Shin, Taek-Young;Kim, Ji-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1700-1705
    • /
    • 2003
  • In this paper, the automatic steering system for unmanned vehicle was developed. The vision system is used for the lane detection system. This paper defines two modes for detecting lanes on a road. First is searching mode and the other is recognition mode. We use inverse perspective transform and a linear approximation filter for accurate lane detections. The PD control theory is used for the design of the controller to compare with $H_{\infty}$ control theory. The $H_{\infty}$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_{\infty}$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_{\infty}$ controller is robust for the disturbances in the test results.

  • PDF

Controller Transition Management of Hybrid Position Control System for Unmanned Expedition Vehicles (무인탐사차량의 위치제어를 위한 복합제어 시스템의 제어기 전이관리)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.969-976
    • /
    • 2008
  • A position control problem is studied for UEV(Unmanned Expedition Vehicles), which is to follow pre-determined paths via fixed way-points. Hybrid control systems are used for position control of UEV depending on the operating condition. Speed control consists of three controllers: PID control, adaptive PI control, and neural network. Heading control consists of two controllers, PID and adaptive PID control. The controllers are selected based on the changes of road conditions. We suggest an adaptive PI control algorithm for speed control and an transition management algorithm among the controllers. The algorithm adapts the road conditions and variation of vehicle dynamical characteristics and selects a suitable controller.

Behavior-based Control Considering the Interaction Between a Human Operator and an Autonomous Surface Vehicle (운용자와 자율 무인선 상호 작용을 고려한 행위 기반의 제어 알고리즘)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan;Jo, Yongjin;Ryu, Jaekwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.620-626
    • /
    • 2019
  • With the development of robot technology, the expectation of autonomous mission operations has increased, and the research on robot control architectures and mission planners has continued. A scalable and robust control architecture is required for unmanned surface vehicles (USVs) to perform a variety of tasks, such as surveillance, reconnaissance, and search and rescue operations, in unstructured and time-varying maritime environments. In this paper, we propose a robot control architecture along with a new utility function that can be extended to various applications for USVs. Also, an additional structure is proposed to reflect the operator's command and improve the performance of the autonomous mission. The proposed architecture was developed using a robot operating system (ROS), and the performance and feasibility of the architecture were verified through simulations.

Vision Processing for Precision Autonomous Landing Approach of an Unmanned Helicopter (무인헬기의 정밀 자동착륙 접근을 위한 영상정보 처리)

  • Kim, Deok-Ryeol;Kim, Do-Myoung;Suk, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • In this paper, a precision landing approach is implemented based on real-time image processing. A full-scale landmark for automatic landing is used. canny edge detection method is applied to identify the outside quadrilateral while circular hough transform is used for the recognition of inside circle. Position information on the ground landmark is uplinked to the unmanned helicopter via ground control computer in real time so that the unmanned helicopter control the air vehicle for accurate landing approach. Ground test and a couple of flight tests for autonomous landing approach show that the image processing and automatic landing operation system have good performance for the landing approach phase at the altitude of $20m{\sim}1m$ above ground level.