• Title/Summary/Keyword: unknown input estimation

Search Result 100, Processing Time 0.032 seconds

Estimation of Localized Structural Parameters Using Substructural Identification (부분구조 추정법을 이용한 국부구조계수추정)

  • 윤정방;이형진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.04a
    • /
    • pp.119-126
    • /
    • 1996
  • In this paper, a method of substructural identification is presented for the estimation of localized structural parameters. for this purpose, an auto-regressive and moving average with stochastic input (ARMAX) model is derived for the substructure to process the measurement data impaired by noises. The sequential prediction error method is used fer the estimation of unknown localized parameters. Using the substructural method, the number of unknown parameters can be reduced and the convergence and accuracy of estimation can be improved. For some substructures, the effect of the input excitation is expressed in terms of the responses at the inferences with the main structure, and substructural identification may be carried out without measuring the actual input excitation to the whole structure. Example analysis is carried out for idealized structural models of a multistory building and a truss bridge. The results indicate that the present method is effective and efficient for local damage estimation of complex structures.

  • PDF

Substructure based structural damage detection with limited input and output measurements

  • Lei, Y.;Liu, C.;Jiang, Y.Q.;Mao, Y.K.
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.619-640
    • /
    • 2013
  • It is highly desirable to explore efficient algorithms for detecting structural damage of large size structural systems with limited input and output measurements. In this paper, a new structural damage detection algorithm based on substructure approach is proposed for large size structural systems with limited input and output measurements. Inter-connection effect between adjacent substructures is treated as 'additional unknown inputs' to substructures. Extended state vector of each substructure and its unknown excitations are estimated by sequential extended Kalman estimator and least-squares estimation, respectively. It is shown that the 'additional unknown inputs' can be estimated by the algorithm without the measurements on the substructure interface DOFs, which is superior to previous substructural identification approaches. Also, structural parameters and unknown excitation are estimated in a sequential manner, which simplifies the identification problem compared with other existing work. Structural damage can be detected from the degradation of the identified substructural element stiffness values. The performances of the proposed algorithm are demonstrated by several numerical examples and a lab experiment. Measurement noise effect is considered. Both the simulation results and experimental data validate that the proposed algorithm is viable for structural damage detection of large size structural systems with limited input and output measurements.

Design of unknown input observer of wheelbase preview control of commercial vehicles (상용 차량의 축거 예견 제어를 위한 미지 입력 관측기 설계)

  • 노현석;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.892-895
    • /
    • 1996
  • An unknown input observer is proposed that can be used in wheelbase preview control of commercial vehicles. The preview and state information, required to calculate actuator force, are reconstructed from the measurement variables such as heave and pitch acceleration. Gain matrix of observer is optimally selected so that influence of system and measurement noises on the estimation error can be minimized. Estimated preview information requires low pass filtering to eliminate high frequency components resulting from differentiation of noisy output signals. Effectiveness of the proposed method is demonstrated by numerical simulation of half car model.

  • PDF

IMM Method Using Intelligent Input Estimation for Maneuvering Target Tracking

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1278-1282
    • /
    • 2003
  • A new interacting multiple model (IMM) method using intelligent input estimation (IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The genetic algorithm (GA) is utilized to optimize a fuzzy system for a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation (IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

Estimation of Vehicle Sideslip Angle for Four-wheel Steering Passenger Cars

  • Kim, Hwan-Seong;You, Sam-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.476-476
    • /
    • 2000
  • This paper deals with an estimation method far sideslip angle by using an unknown input observation technique in 4WS passenger car systems. Firstly, a 4WS vehicle model with 3DOP is derived under the constant velocity and same tyre's properties. The induced model is transformed into the linear state space model with considering the external disturbance. Secondly, an unknown input observer is introduced and its property which estimating the states of system without any disturbance information is shown. Lastly, the estimated sideslip angle of the 4WS system is verified through numerical simulation.

  • PDF

Adaptive Estimator for Tracking a Maneuvering Target with Unknown Inputs (미지의 입력을 갖는 기동표적의 추적을 위한 적응 추정기)

  • Kim, Kyung Youn
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.34-42
    • /
    • 1998
  • An adaptive state and input estimator for the tracking of a target with unknown randomly switching input is developed. In modeling the unknown inputs, it is assumed that the input sequence is governed by semi-Markov process. By incorporating the semi-Markov probability concepts into the Bayesian estimation theory, an effective adaptive state and input estimator which consists of parallel Kalman-type filters is obtained. Computer simulation results reveal that the proposed adaptive estimator have improved tracking performance in spite of the unknown randomly switching input.

  • PDF

Design of Integral Observers for Unknown Actuator Faults Estimation (구동기의 미지고장추정을 위한 적분관측기 설계)

  • Ahn, P.;Lee, M.K.;Kim, J.I.
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.93-98
    • /
    • 2006
  • This paper deals with the estimation of unknown actuator faults for linear dynamic systems with sensor noise. The presented method based on the integral observer permits to achieve good convergence and exact estimation of unknown faults. The validity of proposed method is established by using the simulation results which compare to the existing methods.

IMM Method Using GA-Based Intelligent Input Estimation for Maneuvering target Tracking (기동표적 추적을 위한 유전 알고리즘 기반 지능형 입력추정을 이용한 상호작용 다중모델 기법)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.99-102
    • /
    • 2003
  • A new interacting multiple model (IMM) method using genetic algorithm (GA)-based intelligent input estimation(IIE) is proposed to track a maneuvering target. In the proposed method, the acceleration level for each sub-model is determined by IIE-the estimation of the unknown acceleration input by a fuzzy system using the relation between maneuvering filter residual and non-maneuvering one. The GA is utilized to optimize a fuzzy system fur a sub-model within a fixed range of acceleration input. Then, multiple models are composed of these fuzzy systems, which are optimized for different ranges of acceleration input. In computer simulation for an incoming ballistic missile, the tracking performance of the proposed method is compared with those of the input estimation(IE) technique and the adaptive interacting multiple model (AIMM) method.

  • PDF

Improved Kalman filter with unknown inputs based on data fusion of partial acceleration and displacement measurements

  • Liu, Lijun;Zhu, Jiajia;Su, Ying;Lei, Ying
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.903-915
    • /
    • 2016
  • The classical Kalman filter (KF) provides a practical and efficient state estimation approach for structural identification and vibration control. However, the classical KF approach is applicable only when external inputs are assumed known. Over the years, some approaches based on Kalman filter with unknown inputs (KF-UI) have been presented. However, these approaches based solely on acceleration measurements are inherently unstable which leads poor tracking and so-called drifts in the estimated unknown inputs and structural displacement in the presence of measurement noises. Either on-line regularization schemes or post signal processing is required to treat the drifts in the identification results, which prohibits the real-time identification of joint structural state and unknown inputs. In this paper, it is aimed to extend the classical KF approach to circumvent the above limitation for real time joint estimation of structural states and the unknown inputs. Based on the scheme of the classical KF, analytical recursive solutions of an improved Kalman filter with unknown excitations (KF-UI) are derived and presented. Moreover, data fusion of partially measured displacement and acceleration responses is used to prevent in real time the so-called drifts in the estimated structural state vector and unknown external inputs. The effectiveness and performance of the proposed approach are demonstrated by some numerical examples.

Observer Design for Robust Process Fault Estimation (견실한 프로세스 고장추정을 위한 관측기 설계)

  • Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2182-2184
    • /
    • 2004
  • This paper presents a systematic and straightforward fault estimation approach for process fault detection. isolation and accommodation. The approach includes the design of a reduced-order observer and an algebraic-fault estimator. The observer is designed for an unknown input and fault-free system, which is obtained by coordinate transformations of original systems with unknown inputs and faults. The observer information is devoted to- the fault estimation for fault detection and isolation. The fault estimates can be used to form an additional control input to accommodate the fault. The suggested scheme is verified through simulation studies performed on the control of a vertical takeoff and landing (VTOL) aircraft in the vertical plane.

  • PDF