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1. INTRODUCTION 
 

Maneuvering target tracking, which is considered as an 
adaptive filtering problem including the uncertainty of target 
model caused by the acceleration, has been studied in the field 
of state estimation over decades. The Kalman filter has been 
widely used as a tracking filter to estimate the position, the 
velocity, and the acceleration of a target, but in the presence of 
a maneuver, its performance may be seriously degraded. To 
solve this difficulty, various techniques have been investigated 
and applied. First, in 1970, Singer proposed a target tracking 
model in which maneuver was assumed as the first order 
Markov process with time correlation [1]. Since the Singer’s 
method, recent researches are roughly divided in two main 
approaches. One approach is to detect the maneuver and then 
to cope with it effectively. Examples of this approach include 
the input estimation (IE) technique [2], the variable state 
dimension (VSD) approach [3], and so on. The other approach 
is to describe the motion of a target with multiple models. The 
interacting multiple model (IMM) method [4] and the adaptive 
IMM (AIMM) method [5] are included in this approach. In 
this paper, the second approach is mainly discussed. 

The accuracy of maneuvering target tracking using multiple 
models relies upon the suitability of each target motion model 
to be used for a maneuver. In the IMM method, the estimate is 
obtained by a weighted sum of the estimates from sub-models 
in accordance with the probability of each model being 
effective. But, to construct multiple models, this method 
requires predefined sub-models with the different dimensions 
or process noise levels in consideration of the properties of the 
maneuvers. On the other hand, the AIMM method needs no 
predefined sub-models because it estimates the acceleration of 
the target adaptively and constructs multiple models using this 
estimated acceleration. In this algorithm, a two-stage Kalman 
estimator [6], which has a bias-free filter and a bias filter, is 
used only in estimating the acceleration. However, the 
acceleration intervals, which are symmetrically added to or 
subtracted from the estimated acceleration value to construct 
multiple models, should also be determined by the properties 
of the maneuvers. 

In this paper, to relax these prior requirements of the 
conventional maneuvering target tracking methods, improve 
the tracking performance, and establish the systematic tracker 
design procedure for a maneuvering target, we propose an 

IMM method using intelligent input estimation (IIE). In the 
proposed method, the acceleration level for each sub-model is 
determined by the IIE. The IIE means the estimation of the 
unknown acceleration input within a fixed range by a fuzzy 
system using the relation between maneuvering filter residual 
and non-maneuvering one. The genetic algorithm (GA) is 
utilized to optimize a fuzzy system for a sub-model within a 
fixed range of acceleration input. Then, multiple models are 
composed of these fuzzy systems, which are optimized for 
different ranges of acceleration input. 
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This paper is organized as follows: Section 2 describes 
target model and summarizes the AIMM method as 
preliminaries, and the details of the IIE and the IMM method 
using IIE are described in section 3. In section 4, the tracking 
performance of the proposed method is compared with those 
of the input estimation (IE) technique and the AIMM method. 
Conclusions are finally drawn in section 5. 

 
2. PRELIMINARIES 

 
2 .1 Target model 

The linear discrete time models for a maneuvering target 
and a non-maneuvering target are described for each axis by 
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where ]'  []'  [)( vpppkX == &  is the state vector, F  and 
 are the transition matrix and the excitation matrix, 

respectively,  is the process noise, and  is the 
unknown acceleration input. The measurement equation is 
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where ]0  1[=H  is the measurement matrix and  is the 
measurement noise.  and  are considered as white 
Gaussian noise sequences with zero-mean and variances  
and 
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q
r , and their correlation is assumed to be zero.  

 
2 .2 AIMM method 

The AIMM method has a limited number of sub-models for 
each axis, and each sub-model is represented as the estimated 
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acceleration or the acceleration levels distributed 
symmetrically about the estimated one [5]. In the case of  
sub-models for each axis, the set of multiple models is 
represented as  
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According to the universal approximation theorem [7], 
there exist optimal parameters , ijc ijσ , and , which can 

approximate  as closely as possible. In this paper, the 
GA is applied to optimize the parameters in both the premise 
part and the consequence part of the fuzzy system 
simultaneously. Obviously the fuzzy system should be 
designed such that the difference between the actual 
acceleration input and the estimated one is minimized. 

jû

)(ˆ kuwhere  is the estimated acceleration and )(ˆ ka 2/)1( −Nε  is 
the predetermined acceleration interval. 

Figure 1 describes the AIMM method with  sub- 
models. 
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The GA represents the searching variables of the given 
optimization problem as a chromosome containing one or 
more sub-strings. In this case, the searching variables are the 
center  and the standard deviation ijc ijσ  for a Gaussian 

membership function of the fuzzy set  and the singleton 

output . A convenient way to convey the searching 
variables into a chromosome is to gather all searching 
variables associated with the 

ijA

jû

j th fuzzy rule into a string and 
to concatenate the strings as  

{ }j2211 ˆ  ,  ,  ,  , uccS jjjjj σσ=  

{ }MSSS S  ,  ,  , 21 L=  
where  is the real coded parameter sub-string of the jS j th 

fuzzy rule in an individual . At the same time and to 
identify the number of fuzzy rules, we utilize the binary coded 
rule number string, which assigns a 1 or 0 for a valid or 
invalid rule, respectively. Figure 2 illustrates the structure of a 
chromosome. 

SFig. 1 AIMM method 
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In this paper, we propose an IMM method using IIE to 
relax the prior requirements of the conventional multiple 
model methods, and improve the tracking performance. The 
acceleration level for each sub-model is determined by the IIE. 
The IIE means the estimation of the unknown acceleration 
input within a fixed range by a fuzzy system using the relation 
between maneuvering filter residual and non-maneuvering one. 
The th fuzzy rule for a sub-model is 
represented by 
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where two input variables, 1χ  and 2χ , are the 

non-maneuvering filter residual  and the difference 

between non-maneuvering filter residual and 
maneuvering filter residual 

)(k
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υ , respectively. A 
consequent variable  is the estimated acceleration input 

 for the 
y

jû j th fuzzy rule. The Gaussian membership 

function  with the center  and the standard deviation ijA ijc

ijσ  has the following membership grade. 

 
Fig. 2 Structure of a chromosome 

 
Each individual is evaluated by a fitness function. We use 

the fitness function of the form 
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where λ  is a positive scalar, to adjust the weight between 
the error and the rule number. 

The GA that optimally estimates the unknown acceleration 
input in the proposed method is summarized as follows [9-12]. 
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number, maximum rule number, population size, 
crossover rate, and mutation rate). 

The unknown acceleration input  can be estimated in 
the following form. 

)(ˆ ku Step 2: Randomly generate the initial population such that all 
searching variables exist within the search space. 
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Step 3: Decode the chromosome of each individual in the 
population and determine the fuzzy systems for 
sub-models. Evaluate the determined fuzzy systems by 
(6) and give a fitness value to each individual in the 
population by (7). 
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Step 4: Evolve a new population by reproduction, crossover, 
and mutation. 

Step 5: Increase the generation number by one, and replace the 
old generation with the new one. During the 
replacement, preserve an individual that has the 
maximum fitness value by the elitist reproduction.  

Step 6: Repeat Steps 3 through 5 until one of the following is 
satisfied:  
(1) the satisfactory population shows up, 
(2) the generation number reaches the maximum   

generation number, or  
(3) the fitness function value is not increased for the 

predetermined generations. 
Fig. 4 IMM method using IIE 

 
Finally, the proposed IIE is summarized as Fig. 3. where the mixing probability mn|µ  and the normalization 
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where nmφ  is the known model transition probability from 
the th sub-model to the th sub-model and n m )1( −knµ  is 
the model probability of the th sub-model at scan n 1−k .  
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Update of model probability 3 .2 IMM method using IIE 
∙ likelihood function:  The algorithm of the proposed IMM method using IIE 
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Estimate combination 
∙ state estimate: 
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Table 4 Fuzzy rules identified for  )(3 ku
           (12.1) ∑

=

=
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m
mm kkXkkkX

1
)|(ˆ)()|(ˆ µ

Parameters identified for )(01.0)(1.0 2
3 km/s ku −≤≤−No. of

rule 
1c  1σ  2c  2σ  û  

1 2.778 1.121 -0.638 1.124 -0.0530
2 0.941 1.486 1.259 0.306 -0.0471
3 0.879 1.739 0.919 0.612 -0.0402
4 2.065 0.558 1.633 1.875 -0.0289
5 1.137 1.279 1.763 1.943 -0.0221
6 0.895 0.240 1.452 2.693 -0.0477
7 -2.085 0.829 -0.652 2.908 -0.0172
8 -0.263 0.336 -0.736 2.098 -0.0396
9 1.596 3.252 0.203 0.229 -0.0279

∙ estimate covariance matrix:  
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Figure 4 describes the IMM method using IIE. 
 

4. SIMULATION RESULTS 
 

In this section, the simulations are divided in two parts: a 
simulation for searching the optimal fuzzy rules off-line and a 
simulation for tracking a maneuvering target. The tracking 
performance of the proposed method is compared with those 
of the IE technique and the AIMM method. 

 
 

 
Table 1 The initial parameters of the GA 

Parameters Values 
Maximum Generation 300 

Maximum Rule Number 50 
Population Size 500 
Crossover Rate 0.9 
Mutation Rate 0.01 

λ  0.95 

 

 
The initial parameters of the GA are presented in Table 1. 

The maximum acceleration input for whole simulations is 
assumed to be 0.1 . The fuzzy rules identified off-line for 
the acceleration input  are 

showed in Table 2, for  in Table 3, 

and for  in Table 4. 
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Table 2 Fuzzy rules identified for  )(1 ku

Parameters identified for )(010)(010 2
1 km/s .ku. <<−No. of 

rule 
1c  1σ  2c  2σ  û  

1 0.229 0.707 1.205 2.483 0.0088
2 0.116 1.838 1.236 0.707 -0.0085
3 0.746 0.028 1.488 2.199 -0.0003
4 1.684 0.968 1.625 2.189 0.0018
5 1.459 0.661 -1.233 0.062 0.0081
6 -0.189 0.977 -0.626 0.249 -0.0094

Fig. 6 Ideal motion of incoming anti-ship missile  
 Table 3 Fuzzy rules identified for  )(2 ku

The target is assumed as an incoming anti-ship missile on 
yx −  plane [13]. The initial position of the target is at 

[72.9  21.5 ], and it moves with a constant velocity of 
0.3 km  along a -150 o  line to the 

km
s/

km
x -axis. The target has 

the lateral maneuvers as shown in Fig. 5, and the 
corresponding target motion is illustrated in Fig. 6. For both 
axes, the standard deviation of the zero mean white Gaussian 
measurement noise is 0.5  and that of a random 
acceleration noise is 0.001 . The standard deviations of 
the bias filter and the bias-free filter for a two-stage Kalman 
estimator are 0.01 and 0.001 , respectively. The 
switching probability matrix of the sub-model, 

km
2/ skm

2s/km 2km / s
nmφ , is taken 

by 

Parameters identified for  )(1.0)(01.0 2
2 km/s ku ≤≤No. of 

rule 
1c  1σ  2c  2σ  û  

1 -0.010 0.585 1.367 0.065 0.0302
2 0.972 0.046 0.999 1.781 0.0419
3 0.636 0.104 1.435 0.470 0.0106
4 0.277 1.829 1.092 1.017 0.0264
5 1.464 0.746 1.517 1.669 0.0524
6 -0.162 0.839 -1.087 1.104 0.0123
7 0.162 1.162 -0.428 1.955 0.0557
8 0.833 1.099 -0.963 0.471 0.0152
9 -0.212 0.016 -0.382 0.376 0.0585
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where  means the number of sub-models. Assuming that 
the first sub-model is nearer the motion model of the target, 
the initial model probability for sub-models is selected by  

N
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N
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The acceleration level of the sub-model for the AIMM3 
(the AIMM method with 3 sub-models) method is 0.04 

. )/( 2skm
The simulation results and the numerical results over 100 

runs are shown in Fig. 7. 
 

 
a. RMSE for position 

 

 
b. RMSE for velocity 

Fig. 7 The simulation results 
 
 

5. CONCLUSIONS 
 

In this paper, we have proposed the IMM method using IIE 
for maneuvering target tracking. In the proposed method, the 
acceleration level for each sub-model was determined by 
IIE-the estimation of the unknown acceleration input by a 
fuzzy system using the relation between maneuvering filter 
residual and non-maneuvering one. The GA was utilized to 
optimize a fuzzy system for a sub-model within a fixed range 
of acceleration input. Then, multiple models were composed 
of these fuzzy systems, which were optimized for different 

ranges of acceleration input. In computer simulation for an 
incoming ballistic missile, we could obtain superior tracking 
performance compared with the IE technique and the AIMM 
method. Additionally, we could overcome the mathematical 
limits of the conventional multiple model methods.  
 
 
A
 

CKNOWLEDGMENTS 

This work was supported by KOSEF R01-2001-000-00316.  
 
 

REFERENCES 
 
[1] R. A. Singer, “Estimating optimal tracking filter 

performance for manned maneuvering targets,” IEEE 
Trans. Aerosp. Electron. Syst., Vol. AES-6, No. 4, pp. 
473–483, July, 1970. 

[2] P. L. Bogler, “Tracking a maneuvering target using input 
estimation,” IEEE Trans. Aerosp. Electron. Syst., Vol. 
AES-23, No. 3, pp. 298–310, May, 1987. 

[3] Y. Bar-Shalom and K. Birmiwal, “Variable dimension 
filter for maneuvering target tracking,” IEEE Trans. 
Aerosp. Electron. Syst., Vol. AES-18, No. 5, pp. 
621–629, September, 1982. 

[4] H. A. P. Blom and Y. Bar-Shalom, “The interacting 
multiple model algorithm for systems with a 
jump-linear smoothing application”, IEEE Trans. Autom. 
Control, Vol. AC-33, No. 8, pp. 780-783, August, 1988. 

[5] A. Munir and D. P. Atherton, “Adaptive interacting 
multiple model algorithm for tracking a maneuvering 
target,” IEE Proc. of Radar, Sonar, and Navigation, Vol. 
142, No. 1, pp. 11–17, 1995. 

[6] A. T. Alouani, A. T. Xia, P. Price, and W. D. Blair, “A 
two-stage Kalman estimator for state estimation in the 
presence of random bias for tracking maneuvering 
targets,” Proceedings of 30th IEEE Conference on 
Decision and Control, pp. 2059–2062, December, 1991. 

[7] L. X. Wang, A Course in Fuzzy Systems and Control, 
Prentice Hall, 1998. 

[8] Y. Bar-Shalom and X. Li, Estimation and Tracking; 
Principles, Techniques and Software, Norwood, MA: 
Arteck House, 1993. 

[9] D. E. Goldberg, Genetic Algorithms in Search, 
Optimization, and Machine Learning, Addison-Wesley, 
1989. 

[10] Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo, 
“Linguistic model identification for fuzzy system,” 
Electron. Letter, Vol. 31, pp. 330–331, 1995. 

[11] Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo, 
“Fuzzy system modeling and its application to mobile 
robot control,” Fuzzy Logic and its Applications to 
Engineering, Information Sciences, and Intelligent 
Systems, ed. Z. Bien and K. C. Min, Kluwer Academic 
Publisher, pp. 147–156, 1995. 

[12] Y. H. Joo, H. S. Hwang, K. B. Kim, and K. B. Woo, 
“Fuzzy system modeling by fuzzy partition and GA 
hybrid schemes,” Fuzzy Sets and Systems, Vol. 86, pp. 
279–288, 1997. 

[13] S. McGinnity and G. W. Irwin, “Fuzzy logic approach to 
maneuvering target tracking,” IEE Proc. of Radar, Sonar, 
and Navigation, Vol. 145, No. 6, pp. 337–341, 1998. 


	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 1278
	page21: 1279
	page31: 1280
	page41: 1281
	page51: 1282


