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-Adaptive Estimator for Tracking a Maneuvering
Target with Unknown Inputs
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Abstract

An adaptive state and input estimator for the tracking of a target with unknown randomly switching
input is developed. In modeling the unknown inputs, it is assumed that the input sequence is governed
by semi-Markov process. By incorporating the semi-Markov probability concepts into the Bayesian es-
timation theory, an effective adaptive state and input estimator which consists of paralle] Kalman-type
filters is obtained. Computer simulation results reveal that the proposed adaptive estimator have
improved tracking performance in spite of the unknown randomly switching input.
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I. INTRODUCTION

The problem of tracking a maneuvering tar-
get has many military and civilian application
areas and it still remains a great deal of debate
to get the best solution[1]-[3]. The basic
problem is that there exists a mismatch be-
tween the mathematically modeled target dy-
namics and the actual target dynamics. The
system model of a target moving with con-
stant velocity in a straight line is different

from that of a target moving with acceleration
or maneuver, If the system model is not cor-
rect, track loss may occur easily in the trac-
king process.

There have been many approaches in the li-
terature to get around the dilemma of the
model mismatch problem. In general, these
approaches can be categorized into three
classes. The IE(input estimation) algorithm
[4], models the maneuver as constant un-
known input, estimates its magnitude and on-
set time and then compensates the state esti-
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mate in accordance with the estimated input.
In the VSD(variable state dimension) algo-
rithm{5], the state dynamic model for the tar-
get is changed by introducing additional state
components when the maneuver is detected.
As pointed out in [6], the VSD algorithm has
the undesirable feature of requiring reinitiali-
zation when the maneuver is detected and the
lower order CV(constant velocity) target mo-
del is replaced by the higher order CA(con-
stant acceleration) model. The IMM (interac-
ting multiple model) algorithm{7]~{[10] con-
sists of parallel Kalman filters for each model
which has different dimension and process
noise intensity, a model probability evaluator,
an estimate mixer at the input of each Kalman
filters, and an estimate combiner at the output
of the filters. In parallel to the above three
classes, Moose et al.[11] present an efficient
adaptive estimator for tracking a maneuvering
target containing unknown or randomly swit-
ching biased measurements by using a semi
-Markov concepts. Despite the large and ran-
domly varying measurement biases, the adap-
tive estimator provides an accurate estimate
of maneuvering target state,

In this paper, we have developed an adapt-
ive state estimator algorithm for tracking a
maneuvering target with unknown inputs, In
modeling the unknown randomly switching
maneuver inputs, it is assumed that the input
sequence dynamics are governed by a semi
-Markov process[12]. A semi-Markov process
differs from a Markov process in that the du-
ration of time in one state before switching to
another state is itself a random variable, By
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particular, we developed the input estimator
for the unknown randomly varying maneuver
inputs using the weights for each Kalman-type
filter which is matched to a set of different
possible input sequences.

The rest of this paper is organized as
follows. Section II describes the problem for-
mulation for the maneuvering target which
have unknown inputs, Adaptive state and in-
put estimators are developed in section I and
IV, respectively. Computer simulation is pro-
vided in section IV and conclusion is described
in the final section,

II. PROBLEM FORMULATION

The dynamic model for the maneuvering tar-
get with randomly switching inputs can be de-
scribed in the LTI(linear time-invariant) form
as

X+l =0xp F+Tub +Pwi (1)
ze= Hxy+ v (2)

where x,€ R™ is the state vector, zz€R™ is
measurement vector, wx€ R and v;€ R™! are
zero-mean white Gaussian process and measure-
ment noise sequences, respectively with known
covariance matrices such that

E [wk ij] = Qé@ (3&)
E[wv]=Réy ~(3b)

where &y is the Kronecker delta which is equal
to 1 if k=j, otherwise it is zero. And it is

;,inclusion the semi-Markov concepts into a
, Bayesian conditional probability theory, we “assumed that the process noise and measure-
, obtained an adaptive estimator which is ment noise are uncorrelated each other such
/ composed of parallel Kalman-type filters. In that
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The new term u* is the maneuver input
which is unknown to.the estimator. It is
assumed that «® is governed by a semi-Markov
process. A semi-Markov process differs from a
Markov process in that the duration of time in
one state before switching to another state is
itself a random variable, Therefore, the
maneuver input can take any one of N possible
discrete values such as {u!, u?-,u¥}for a ran-
dom duration of time before switching to the
other states. The block diagram of the dy-
namic model is depicted in Fig. 1.

[I. ADAPTIVE STATE ESTIMATOR

The optimal state estimate can be obtained
from the conditional expectation as

% ke = E [ x| Z]
=J':J xip (x| Zi)dx, (5)

where, the Z; is the measurement sequences
up to #& as Zy=[z z -~ z). The conditional
density function of (5) can be written using
Bayes theory as

a8l 1. B39 53 2dd g HYME
Fig. 1. Block diagram of the target dynamic
model.
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f}p(xk, Zy, )

o =1
p(x)Zy) (2

=l>flp(xk|zk, W) p(u'|Z) (6)
Substituting (6) into (5), we obtain

X klk ='5§1 j' o_om xep (x| Zi, u')dxe p(u'1Zy)

=% & wp (W1 Z0) (7
=1
where
Eii = jio xe p(xe| Z, u')dxe 8)

The term p(#]Zy) in (7) means the weigh-
ting factor for the i-th estimator, Therefore
the optimal state estimate can be obtained
from the weighted sum of N individual state
estimate which is conditioned on a different «
maneuver input,

To obtain the i-th state estimator, the con-
ditional density function of (8) can be rewrit-
ten as by using the Bayes theory

(x| Zy, W) = p(xe| Ze-1, 21, )

_ pzlxe, o, Ze-1) p(iled, Zi-1)
p(zlu!, Zi-1)

(9

The first term of the numerator of (9) can
be rearranged by

Pzl xe, 4, Zi-1) = P(2e) %, u') (10

Using the measurement equation of (2), the
mean and the covariance of (10) are given by

Elzelxy, '] = Hxi (1)

El(z—Hxi) (ze—Hx)T]=R (12)
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Also, by using the state equation of (1), the
secorid term of the numerator of (9) has the
following mean and covariance which consti-
tute the time-update process of the i-th esti-
mator.

%i-1 = Elaelud, Zi1]

=@ X p-1p-1 + T (13)

Phier=EL (o= £ge-1) (2= K17 ]
= E[ (xx—P f;—lik—l—ru')
X (=@ X1 p-1—Tu")T]
=@ Pi-1t-1 0T +¥Q¥T+D), (14)

where

D, =TE[ (w0 —u) (ut=u!)TI'T
+TE[ (w0 —u') (xe-1— X p-1pc-07 10T
+@ E{ (xk-1— £ g-10-1) (@ =)7ICT - (15)

Remark 1; From extensive simulations, we
have found the estimates of the target states
to be close enough to allow the assumption
that E[xe-1—%%-14-1) ]= 0. Thus Dj, reduces to
TE[ (=) (b —uHT]I'T which can be deter-
mined by assuming that «* is uniformly distri-
- buted between adjacent vectors »' and u'*,

In view of (11)~(14), we could write the
probability density function of (9) as

(x| Zi, o) =K exp [ —1/2{(ze— Hxe)T R (ze— Hxe)

+ (xe— & #1k-1) P i1 (xe— £ #ik-1)}]
(16)

where K is an appropriate normalizing constant
which takes into account the denominator of (9).
We differentiate the logarithm of (16) with re-
spect to x and set this to zero to obtain the opti-
mal state estimate of the i-th filter Xk,

Fope =% -1 T Ki [ze— H %kik-1] (17)

where K% is the Kalman gain of the i-th esti-
mator and defined by

Ki = Py HY(HPjy-y HT+ R) ™! (18).

In addition, the covariance of estimation error
is given by

Pl = E[ (= %) O— )]

=[I-K.H] Py (19

It is noted that (17), (18) and (19) consti-
tute the measurement-update process of the
i-th estimator. If we consider the time and
measurement update process of estimation er-
ror covariance matrices (14) and (19) and Kal-
man gain (18), we find that these equations
are independent of the measurement data so
that these can be precalculated. In addition, if
we assume that D% in (15) is equal to D; for all
i, the off-line computational load for (14), (18)
and (19) can be reduced to 1/N.

Let us consider the weighting term in (7) by
splitting the measurement sequence {Z;}. into
{ze, Zp-1).

p(|Ze) = p(i| 22, Zi-1)
_ plald, Zi-1) p(¥Zi-1)
(2l Ze-1) (20)

Assuming that the duration of time #* re-
mains in one state before switching to another
state is much longer than the sampling inter-
val, the first term of the numerator in (20)
becomes Gaussian distribution with the follow-
ing mean and covariance,
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71 = Elzl, Zi-1]
=H% k-1 (21)

C=E(z—z1) (z—2D)T]
=HP'w-1 HT+R (22)

Next, the second term of the numerator in
(20) can be expressed as follows by using
Bayes theory.

P(#|Z-1) =p(ub=wZe-y)
Lolub=u, ut =, Zu)

P(Zi-1)
=£P(“£= w'lup, =, Zx-1)
=1
Xp(ul_., =u'l Zi-1) (23)

Let us define the weighting factor and the
Markov transition probability as follows:

Wy =p(ub_, = u'lZi-1) (24)
0 =p(ud=1lul_ =, Zi-) (25)

In view of (21)~(25), (20) can be expressed
as the following vector-matrix recursive form:

.kackPkQT.Qk—l (26)

where 2,€" is the weighting matrix whose
i-th element is w{, P.€ R"¥ is diagonal matrix
whose element is given by

pr=exp[ =172 (zx~z )7 (@)~ (zm~z1)] (27)

where z' and Q,' are given by (21) and (22),
respectively. In addition, @ € R¥¥ is predeter-
mined Markov transition matrix whose ele-
ment is 8;and ¢ is a normalizing factor which

V3PP =EA A2 A1 21998 8¢

is calculated at each iteration to satisfy the
following:

é“”":l (28)

Remark 2; In general, the sample rate is set
high enough to be much faster than the ran-
dom switching of the maneuver input, There-
fore the predetermined Markovian transition
probability 8 defined in (25) is close to one if
J=i, otherwise it is close to zero.

IV. ADAPTIVE INPUT ESTIMATOR

In some applications such as maneuvering
target tracking, it is essential for the tracking
filter to estimate the magnitude and onset
time of the maneuver input in an efficient
way. In order to estimate the maneuver input
in an optimal sense, conditional expectation-is
introduced again,

B=Elulz) =" uhp(hizoat  (29)

The probability density function in (29) can
be rewritten as follows by using Bayes theory:

$ o, Z, )

) = i=1
(k) Zy) 220

ﬁglp(u'uzk, u) p(u'l Ze) (30)

Substituting (30) into (29) and exchanging
summation and integration gives

d=1 7 hpGhIZi w)dd plu1Z)

i=1

"‘g‘l E[\Ze, #'] p(i| Ze) (31)

where E[ut|Zi, u']=u' and p(u'|Z)=w} by
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considering (24). Thus we can obtain the input
estimate as

B=UTy (32)

where U€E R™ is an assumed N discrete input
whose i-th element is # and 2:€R™ is
obtained from (26). It is pointed out that the
estimate of maneuver input can be obtained
quite effectively by using the weighting factor
which is already calculated in adaptive state
estimator. The block diagram of the adaptive
state and the iinput estimator is illustrated in
Fig. 2.

V. NUMERICAL EXAMPLE

We carried out numerous computer simula-
tions to demonstrate the effect of the pro-
posed algorithm. In this section, the 3rd-order
dynamic target model is considered as in [11].
The coefficient matrices in (1) and (2) are
given by

[ —0.005 —0.013 1.905
®=| 0006 0008 —0025 |,
00 00 0935

[ —2.009
r=|-0013
0.0

16,588
¥ =] 1.9055
9.673

, H=[1.0 0.0 0.0]

It is assumed that the process noise covari-
ance 0=0.00154, measurement noise covari-
ance R=200 and D}=F (i=1, 2,--,5). The gene-
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Fig. 2. Block diagram of the adaptive estimator.

rating data for the unknown input #* is —17
for the first 250 sample times, and 17 for the
next 250 sample times and the set of discrete
states for w!(i=1, 2,--,5) is set to{—18, —8, 0,
8, 18} to span the entire range of ub. The
predetermined Markov transition probability 6
is 0.95 for i=j and 0.0125 for i#j. The necessa-
ry initial conditions are as follows : True and
estimated state are x,=[1 1 1]7 and xy-,=[00
0]7, respectively. Error covariance matrix
Py_,=I; and weighting factor w{=0.2 for i=1,
2,-,5.

Figs. 3(a)-(c) show the true and estimated
states of target. Figs. 4(a)-(c) show their
associated root-mean square errors(RMSE)
which are obtained from 50 Monte Carlo runs.
As noticed, the proposed adaptive state esti-
mator can track the target states very closely
in steady-state in spite of the unknown
randomly switching maneuver input, Fig. 5
shows the weighting factors for entire sample
intervals. As can be seen, ' is more dominant
than the others for the first 250 sample
intervals since w is close to »* for that period
and the probability value of & is nearly to 1
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(a) first state, (b) second state. (c) third state.
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Fig. 6. True and estimated maneuver input.

for the next sample intervals for the same
reason, Fig. 6 represents the true maneuver in-
put and the estimated input. Finally, Fig. 7
shows its RMSE obtained from 50 Monte Carlo
runs, It is worth noting that the unknown
randomly switching input can be estimated
very effectively by the adaptive input esti-
mator,
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Fig. 7. RMSE between true and estimated ma-
neuver input,

V. CONCLUSION

The tracking problem of a target with un-
known randomly switching maneuver input is
considered. By incorporating the semi-Markov
probability concepts into the Bayesian esti-
mation theory, an effective adaptive state es-
timator which consists of parallel Kalman-type
filters is obtained. In addition, an adaptive in-
put estimator for the unknown randomly
varying maneuver inputs is developed using
the same weight terms as in the adaptive esti-
mator. The exact estimation of the magnitude
and onset time of the maneuver input is par-
ticularly useful in the tactical applications.
From the results of computer simulations, it
can be found that the adaptive state and the
input estimator have improved tracking per-
formance in spite of the unknown randomly
switching input.
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