• Title/Summary/Keyword: unknown compounds

Search Result 160, Processing Time 0.026 seconds

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun;Miao, Cui-Ping;Chen, Hua-Hong;Huang, Fang-Fang;Xia, Yu-Mei;Chen, You-Wei;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.353-360
    • /
    • 2017
  • Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

A study of the metabolites for 7-keto-DHEA-acetate in human urine (뇨시료에 함유된 7-keto-DHEA-acetate의 대사체에 관한 연구 (I))

  • Kim, Yunje;Lee, Jinhee
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.337-346
    • /
    • 2004
  • 7-keto-dehydroepiandrosterone-acetate (7-keto-DHEA-acetate) is an anabolic steroids, and we studied basically to the metabolites of it after human dosing. We tested the matrix effect from human urine to detect the 7-keto-DHEA-acetate. And LC/ESI/MS and GC/MSD was used to detect the metabolites in dosed urine. We found the some unknown compound from dosed urine (M1, M2, M3, M4 and M5), and from these results, we supposed that these compounds have the more than 3 hydroxyl and/or ketone group. Metabolite M1 was supposed that molecular weight is 302 and 3-,17-diketone and 7-hydroxyl compound (7-OH-androstendione). Metabolite M2 was supposed that the molecular weight was same to M1 and 7-,17-diketone and 3-hydroxyl compound (7-keto-DHEA).

Evaluation of Baby-leaf Growth and Leaf Red Color Intensity for Amaranthus Germplasm (아마란스(Amaranthus ssp.) 유전자원의 어린잎 생육과 엽 적색도 평가)

  • Lee, Jun-Gu;Jang, Yoon-Ah;Um, Yeong-Cheol;Lee, Sang-Gyu
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.59-65
    • /
    • 2012
  • This study evaluated the baby-leaf growth, leaf red color intensity, and phytochemical compounds, such as total phenols and total flavonoids using domestic Amaranthus accessions, to select promising germplasm for the use of baby-leaf vegetable. The 39 accessions, upper 15% of 262 Amaranthus germplasm collection showing high red color intensity in baby-leaf, measured as Hunter's a value, were primarily selected. The eleven accessions including IT199970, showing stable red color intensity in baby-leaf both in high-temperature and low temperature cultivation, were finally selected as promising germplasm for the use of baby-leaf vegetable Amaranthus. The leaf red color intensities when they were cultivated at low temperature period were generally higher than those at low temperature period, and all the eleven selected germplasm, including four Amaranthus sub-species and five unknown species, showed stable red color expression in baby-leaf. The total phenol and total flavonoid contents were also presented for finally selected germplasm including their baby-leaf fresh weights. These finally selected germplasm could be potentially used as baby-leaf vegetable resources, through fortifying the color balance of salad vegetable.

20(S)-protopanaxadiol and oleanolic acid ameliorate cognitive deficits in APP/PS1 transgenic mice by enhancing hippocampal neurogenesis

  • Lin, Kaili;Sze, Stephen Cho-Wing;Liu, Bin;Zhang, Zhang;Zhang, Zhu;Zhu, Peili;Wang, Ying;Deng, Qiudi;Yung, Ken Kin-Lam;Zhang, Shiqing
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.325-333
    • /
    • 2021
  • Background: Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders. Enhancing hippocampal neurogenesis by promoting proliferation and differentiation of neural stem cells (NSCs) is a promising therapeutic strategy for AD. 20(S)-protopanaxadiol (PPD) and oleanolic acid (OA) are small, bioactive compounds found in ginseng that can promote NSC proliferation and neural differentiation in vitro. However, it is currently unknown whether PPD or OA can attenuate cognitive deficits by enhancing hippocampal neurogenesis in vivo in a transgenic APP/PS1 AD mouse model. Here, we administered PPD or OA to APP/PS1 mice and monitored the effects on cognition and hippocampal neurogenesis. Methods: We used the Morris water maze, Y maze, and open field tests to compare the cognitive capacities of treated and untreated APP/PS1 mice. We investigated hippocampal neurogenesis using Nissl staining and BrdU/NeuN double labeling. NSC proliferation was quantified by Sox2 labeling of the hippocampal dentate gyrus. We used western blotting to determine the effects of PPD and OA on Wnt/GSK3β/β-catenin pathway activation in the hippocampus. Results: Both PPD and OA significantly ameliorated the cognitive impairments observed in untreated APP/PS1 mice. Furthermore, PPD and OA significantly promoted hippocampal neurogenesis and NSC proliferation. At the mechanistic level, PPD and OA treatments resulted in Wnt/GSK-3β/β-catenin pathway activation in the hippocampus. Conclusion: PPD and OA ameliorate cognitive deficits in APP/PS1 mice by enhancing hippocampal neurogenesis, achieved by stimulating the Wnt/GSK-3β/β-catenin pathway. As such, PPD and OA are promising novel therapeutic agents for the treatment of AD and other neurodegenerative diseases.

Characteristics of the TCE removal in FeO/Fe(II) System (FeO/Fe(II) 시스템에서 TCE의 제거 특성)

  • Sung, Dong Jun;Lee, Yun Mo;Choi, Won Ho;Park, Joo yang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.149-152
    • /
    • 2008
  • The reaction between iron oxide and ferrous iron is known to be the adsorption of ferrous iron onto the oxide surfaces that produces Fe(II)-Fe(III) (hydr)oxides and ferrous oxide oxidized to ferric ion which is the reducing agent of the target compounds. In our investigations on DS/S using ferrous modified steel slag, the results did not follow the trends. FeO and Fe(II), the major component of steel slag, were used to investigate the degradation of TCE. Degradation did not take place for the first and suddenly degraded after awhile. Degradation of TCE in this system was unexpected because Fe(II)-Fe(III) (hydr)oxides could not be produced in absence of ferric oxide. In this study, the characteristics of FeO/Fe(II) system as a reducing agent were observed through the degradation of TCE, measuring byproducts of TCE and the concentration of Fe(II) and Fe(III). Adsorption of ferrous ion on FeO was observed and the generation of byproducts of TCE showed the degradation of TCE by reduction in the system is obvious. However it did not correspond with the typical reducing mechanisms. Future research on this system needs to be continued to find out whether new species are generated or any unknown mineral oxides are produced in the system that acted in the degradation of TCE.

Metabolizing analysis according to the sawdust media of Pleurotus ostreatus (산겨릅나무와 옻나무 톱밥배지에서 재배한 느타리버섯의 함유성분 분석)

  • Shin, Yu-Su;Yang, Bo-Hyun;Kang, Bo-Yeon;Kim, Hyun-Soo;Lee, Ji-Hyun;Hong, Yoon-Pyo;Lee, Sang-Won;Lee, Chan-Jung;Kim, Seung-Yoo
    • Journal of Mushroom
    • /
    • v.9 no.4
    • /
    • pp.194-197
    • /
    • 2011
  • The transitivity of Chemical constituents by Pleurotus ostreatus cultivated in different raw sawdusts, which are Acer tegmentosum MAX, Rhus verniciflura, was investigated. The HPLC chromatography patterns on the chemical constituents of P. ostreatus showed the similar chromatography patterns in the different raw sawdusts and control sawdust. The unknown chemical constituents of P. ostreatus cultivated in the mixed medium added 10 %, 20% raw sawdusts, respectively, were increased. But the significance results in the mixed medium added 50% raw sawdusts were not showed. The chromatography patterns of mycelia grown in media added the 80% MeOH extracts of A. tegmentosum and R. verniciflura showed the similar patterns in comparison with control mycelia. In the results, the secondary metabolites of functional media were not degrade and changed to other derivatives compounds by P. ostreatus.

Solution Phase Photolyses of Substituted Diphenyl Ether Herbicides under Simulated Environmental Conditions (모조(模造) 환경조건하(環境條件下)에서의 치환(置換) Diphenyl Ether 제초제(除草劑)의 광분해(光分解)에 관(關)한 연구(硏究))

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.17 no.3
    • /
    • pp.149-176
    • /
    • 1974
  • Eight substituted diphenyl ether herbicides and some of their photoproducts were studied in terms of solution phase photolysis under simulated environmental conditions by using a Rayonet photochemical reactor. The test compounds absorbed sufficient light energy at the wavelength of 300 nm to undergo various photoreactions. All the photoproducts were confirmed by means of tlc, glc, ir, ms, and/or nmr spectrometry. The results obtained are summarized as follows: Solution phase photolysis of C-6989: An exceedingly large amount of p-nitrophenol formed strongly indicates the readiness of the ether linkage cleavage of this compound as the main reaction in all solvents used. Photoreduction of nitro to amino group(s) and photooxidation of trifluoromethyl to carboxyl group were recognized as minor reactions. Aqueous photolysis of p-nitrophenol: Quinone(0.28%), hydroquinone (0.66%), and p-aminophenol (0.42%) were confirmed as photoproducts, in addition to a relatively small amount of an unknown compound. The mechanisms of formation of these products were proposed to be the nitro-nitrite rearrangement via $n{\rightarrow}{\pi}^*$ excitation and the photoreduction through hydrogen abstractions by radicals, respectively. Solution phase photolysis of Nitrofen: Photochemical reduction leading to the p-amino derivative was the main reaction in n-hexane. In aqueous solution, the photoreduction of nitro to amino group and hydroxylation predominated over the ether linkage cleavage. Nucleophilic displacement of the nitro group by hydroxide ion and replacement of chlorine substituents by hydroxyl group or, to a lesser extent, hydrogen were also observed as minor reactoins. Solution phase photolysis of MO-338: Photoreduction of the nitro to amino group was marked in the n-hexane solution photolysis. In the aqueous solution, photoreduction of the nitro substituent and hydroxylation were the main reactions with replacement of chlorine substituents by the hydroxyl group and hydrogen, and cleavage of the ether linkage as minor reactions. Photolyses of MC-4379, MC-3761, MC-5127, MC-6063, and MC-7181 in n-hexane and cyclohexane: Photoreduction of the nitro group leading to the corresponding amino derivative and replacement of one of the halogen substituents by hydrogen from the solvent used were the key reactions in each compound. Aqueous photolysis of MC-4379: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, hydroxylation, and replacement of the nitro by hydroxy group were prominent with photoreduction and dechlorination as minor reactions. Aqueous photolysis of MC-3761: Cleavage of the ether linkage, replacement of the carboxymethyl by hydroxyl group, and photoreduction followed by hydroxylation were the main reactions. Aqueous photolysis of MC-5127: Replacement of carboxyethyl by hydrogen was predominant with ether linkage cleavage, photoreduction, and dechlorination as minor reactions. It was obvious that the decarboxyethylation proceeded more readily than decarboxymethylation occurring in the other compounds. Aqueous photolysis of MC-6063: Cleavage of the ether linkage and photodechlorination were the main reactions. Aqueous photolysis of MC-7181: Replacement of the carboxymethyl group by hydrogen and monodechlorination were the remarkable reactions. Cleavage of the ether linkage and hydroxylation were thought to be the minor reactions. Aqueous photolysis of 3-carboxymethyl-4-nitrophenol: The photo-induced Fries rearrangement common to aromatic esters did not appear to occur in the carboxymethyl group of this type of compound. Conversion of nitro to nitroso group was the main reaction.

  • PDF

Metabolizing analysis according to the sawdust media of the known anticancer trees by Pleurotus ostreatuss (느타리버섯의 항암수목자원 배지속 함유성분의 분해능 평가)

  • Shin, Yu-Su;Yang, Bo-Hyun;Kang, Bo-Yeon;Kim, Hyun-Soo;Lee, Ji-Hyun;Hong, Yoon-Pyo;Lee, Sang-Won;Lee, Chan-Jung;Kim, Seung-Yoo
    • Journal of Mushroom
    • /
    • v.9 no.4
    • /
    • pp.186-189
    • /
    • 2011
  • The transitivity of Chemical constituents by Pleurotus ostreatus cultivated in different raw sawdusts, which are Juglans mandchurica, Cudrania tricuspidata and Lindera glauca, was investigated. The HPLC chromatography patterns on the chemical constituents of P. ostreatus showed the similar chromatography patterns in all different raw sawdusts and control sawdust. The unknown chemical constituents of P. ostreatus cultivated in the 10%, 20% mixed medium added 10 %, 20% different raw sawdusts, respectively, were increased. But the significance results in the mixed medium added 50% different raw sawdusts were not showed. The chromatography patterns of mycelia grown in media added the 80% MeOH extracts of three tree species showed the similar patterns in comparison with control mycelia. In the results, the secondary metabolites of functional media were not degrade and changed to other derivatives compounds by P. ostreatus.

Effect of Particle Size on the Atomic Structure of Amorphous Silica Nanoparticles: Solid-state NMR and Quantum Chemical Calculations (비정질 규산염 나노입자의 입자 크기에 따른 원자 구조 변화 : 고상 핵자기공명 분석 및 양자화학계산 연구)

  • Kim, Hyun-Na;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.321-329
    • /
    • 2008
  • Amorphous silica nanoparticles are among the most fundamental $SiO_2$ compounds, having implications in diverse geological processes and technological applications. Here, we explore structural details of amorphous silica nanoparticles with varying particle sizes (7 and 14 nm) using $^{29}Si$ and $^{1}H$ MAS NMR spectroscopy together with quantum chemical calculations to have better prospect for their size-dependent atomic structures. $^{29}Si$ MAS NMR spectra at 9.4 T resolve $Q^2,\;Q^3$ and $Q^4$ species at -93 ppm, -101 ppm, -110 ppm, respectively. The fractions of $Q^2,\;Q^3,\;O^4$ species are $7{\pm}1%,\;27{\pm}2%$, and $66{\pm}2%$ for 7 nm amorphous silica nanoparticles and $6{\pm}1%,\;21{\pm}2%$, and $73{\pm}2%$ for 14 nm amorphous silica nanoparticles. Whereas it has been suggested that $Q^2$ and $Q^3$ species exist on particles surfaces, the difference in $Q^{2}\;+\;Q^{3}$ fraction in both 7 and 14 nm particles is not significant, suggesting that $Q^2$ and $Q^3$ species could exist inside particles. $^{1}H$ MAS NMR spectra at 11.7 T shows diverse hydrogen environments, including physisorbed water, hydrogen bonded silanol, and non-hydrogen bonded silanol with varying hydrogen bond strength. The hydrogen contents in the 7nm silica nanoparticles (including water and hydroxyl groups) are about 3 times of that of 14 nm particles. The larger chemical shills for proton environments in the former suggest stronger hydrogen bond strength. The fractions of non-hydrogen bonded silanols in the 14 nm amorphous silica nanoparticles are larger than those in 7 nm amorphous silica nanoparticles. This observation suggests closer proximity among hydrogen atoms in the nanoparticles with smaller diameter. The current results with high-resolution solid-state NMR reveal previously unknown structural details in amorphous silica nanoparticles with particle size.

Effect of Oil Extraction Methods on Sterol Composition of Sesame Oil (채유방법(採油方法)이 참기름의 Sterol조성(組成)에 미치는 영향(影響))

  • Choi, Sang-Do;Kim, Hyoung-Kab
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.365-369
    • /
    • 1985
  • In order to examine the effect of oil extraction methods on the characteristics of sesame oil, the unsaponifiable matters, fractionation sterol pattern and sterol compositions of the each fraction of the oil were compared in the oil extracted by the three different extraction methods, that is, pressure extraction of roasted seed (RTP), acetone extraction of roasted seed(RTE) and acetone extraction of raw seed(RWE). The amount of unsaponifiable in RWE oil was silghly higher as 31.8mg per 1mg drying oil than that in RTP oil of 26.1mg. Sesame oils from three different extraction methods were found to contain $0.26{\sim}0.32%$ free, $0.23{\sim}0.42%$ bound, and $0.49{\sim}0.64%$ total sterol. The content of free sterol in RWE oil was higher as 0.32% than that in RTE and RTP oil of 0.26%, and that of sterylglycoside in RTE oil was lower as 0.12% than that in RTP and RWE oil of 0.23%, but that of sterylester was a little difference. The unsaponifiable matter from fractionation sterol in sesame oil by three different extraction methods was fractionated into less polor compounds, 4,4-dimethyl-, 4-monomethyl-, 4-desmethylsterol fraction by thinlayer chromatography, and sterol composition of 4-desmethylsterol fraction was analyzed by gas liquid chromatography. The major sterols were campe-, stigma-, sito-, and ${\Delta}^5-avenasterol$, but, specially, unknown sterol(RRT:1.35) was found as $23.5{\sim}26.4%$ in total sterols, The content of sitosterol, ${\Delta}^5-avenasterol$, campesterol and stigmasterol were $59.9{\sim}60.3%,\;8.1{\sim}11%,\;16.1{\sim}18.4%,\;11.6{\sim}12.8%$ of the total sterol in free sterol fraction, $37.3{\sim}46.9,\;11.6{\sim}14.2,\;6.6{\sim}9.0$, and $6.1{\sim}8.0%$ of the total sterol in sterylglycoside fraction, $55.9{\sim}59.9,\;9.2{\sim}11.4,\;17.1{\sim}18.9$, and $11.8{\sim}13.7%$ of the total sterol in sterylester fraction, and $39.3{\sim}42.9,\;13.0{\sim}17.2,\;9.1{\sim}11.0$ and $7.4{\sim}11.5%$ of the total sterol in total sterol fraction. But the effect of oil extraction methods on sterol composition in sesame oil were hardly found.

  • PDF