DOI QR코드

DOI QR Code

Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease

  • Zheng, You-Kun (Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University) ;
  • Miao, Cui-Ping (Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University) ;
  • Chen, Hua-Hong (Department of Chemistry and Life Science, Chuxiong Normal University) ;
  • Huang, Fang-Fang (Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University) ;
  • Xia, Yu-Mei (Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University) ;
  • Chen, You-Wei (Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University) ;
  • Zhao, Li-Xing (Key Laboratory of Microbial Diversity in Southwest China of Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University)
  • Received : 2015.08.14
  • Accepted : 2016.07.09
  • Published : 2017.07.15

Abstract

Background: Endophytic fungi play an important role in balancing the ecosystem and boosting host growth. In the present study, we investigated the endophytic fungal diversity of healthy Panax notoginseng and evaluated its potential antimicrobial activity against five major phytopathogens causing root-rot of P. notoginseng. Methods: A culture-dependent technique, combining morphological and molecular methods, was used to analyze endophytic fungal diversity. A double-layer agar technique was used to challenge the phytopathogens of P. notoginseng. Results: A total of 89 fungi were obtained from the roots, stems, leaves, and seeds of P. notoginseng, and 41 isolates representing different morphotypes were selected for taxonomic characterization. The fungal isolates belonged to Ascomycota (96.6%) and Zygomycota (3.4%). All isolates were classified to 23 genera and an unknown taxon belonging to Sordariomycetes. The number of isolates obtained from different tissues ranged from 12 to 42 for leaves and roots, respectively. The selected endophytic fungal isolates were challenged by the root-rot pathogens Alternaria panax, Fusarium oxysporum, Fusarium solani, Phoma herbarum, and Mycocentrospora acerina. Twenty-six of the 41 isolates (63.4%) exhibited activity against at least one of the pathogens tested. Conclusion: Our results suggested that P. notoginseng harbors diversified endophytic fungi that would provide a basis for the identification of new bioactive compounds, and for effective biocontrol of notoginseng root rot.

Keywords

References

  1. He HM, Cui L. Pharmacopoeia of the People's Republic of China. Beijing: Chinese Medical Science Press; 2010.
  2. Yang WZ, Hu Y, Wu WY, Ye M, Guo DA. Saponins in the genus Panax L. (Araliaeae): a systematic review of their chemical diversity. Phytochemistry 2014;106:7-24. https://doi.org/10.1016/j.phytochem.2014.07.012
  3. Zhang Y, Han LF, Sakah KJ, Wu ZZ, Liu LL, Agyemang K. Bioactive protopanaxtriol saponins isolated from the roots of Panax notoginseng (Burk.) F. H. Chen. Molecules 2013;18:10352-66. https://doi.org/10.3390/molecules180910352
  4. Li XT, Zhao YJ, Jiang CF, Zhang HQ, Yu AM. Determination of amino acids in Panax notoginseng by microwave hydrolysis and derivatization coupled with capillary zone electrophoresis detection. Chem Res Chin Univ 2013;29:434-8. https://doi.org/10.1007/s40242-013-2325-2
  5. Jia D, Deng Y, Gao J, Liu X, Chu J, Shu Y. Neuroprotective effect of Panax notoginseng polysaccharides against focal cerebral ischemia reperfusion injury in rats. Int J Biol Macromol 2014;63:177-80. https://doi.org/10.1016/j.ijbiomac.2013.10.034
  6. Gao B, Huang L, Liu H, Wu H, Zhang E, Yang L, Wu X, Wang Z. Platelet $P2Y_{12}$ receptors are involved in the haemostatic effect of notoginsenoside Ft1, a saponin isolated from Panax notoginseng. Brit J Pharmacol 2014;171:214-23. https://doi.org/10.1111/bph.12435
  7. Yang Q, Wang X, Cui J, Wang P, Xiong M, Jia C, Liu L, Ning B, Li L, Wang W, et al. Bidirectional regulation of angiogenesis and miR-18a expression by PNS in the mouse model of tumor complicated by myocardial ischemia. BMC Complement Altern Med 2014;14:183. https://doi.org/10.1186/1472-6882-14-183
  8. Zheng Y, Feng Z, You C, Jin Y, Hu X, Wang X, Han C. In vitro evaluation of Panax notoginseng Rg1 released from collagen/chitosan-gelatin microsphere scaffolds for angiogenesis. BioMed Eng Online 2013;12:134. https://doi.org/10.1186/1475-925X-12-134
  9. Zhou Q, Jiang L, Xu C, Luo D, Zeng C, Liu P, Yue M, Liu Y, Hu X, Hu H. Ginsenoside Rg1 inhibits platelet activation and arterial thrombosis. Thromb Res 2014;133:57-65. https://doi.org/10.1016/j.thromres.2013.10.032
  10. Meng X, Wang M, Wang X, Sun G, Ye J, Xu H, Sun X. Suppression of NADPH oxidase- and mitochondrion-derived superoxide by notoginsenoside R1 protects against cerebral ischemiaereperfusion injury through estrogen receptor-dependent activation of Akt/Nrf 2 pathways. Free Radical Res 2014;48:823-38. https://doi.org/10.3109/10715762.2014.911853
  11. Zhou N, Tang Y, Keep RF, Ma X, Xiang J. Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine 2014;21:1189-95. https://doi.org/10.1016/j.phymed.2014.05.004
  12. Yan S, Li Z, Li H, Arancio O, Zhang W. Notoginsenoside R1 increases neuronal excitability and ameliorates synaptic and memory dysfunction following amyloid elevation. Sci Rep 2014;4:6352.
  13. Zeng XS, Zhou XS, Luo FC, Jia JJ, Qi L, Yang ZX, Zhang W, Bai J. Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from Panax notoginseng against cerebral ischemia. Can J Physiol Pharmacol 2014;92:102-8. https://doi.org/10.1139/cjpp-2013-0274
  14. Wang P, Cui J, Du X, Yang Q, Jia C, Xiong M, Yu X, Li L, Wang W, Chen Y, et al. Panax notoginseng saponins (PNS) inhibits breast cancer metastasis. J Ethnopharmacol 2014;154:663-71. https://doi.org/10.1016/j.jep.2014.04.037
  15. Yang X, Xiong X, Wang H, Wang J. Protective effects of Panax notoginseng saponins on cardiovascular diseases: a comprehensive overview of experimental studies. Evid Based Complement Alternat Med 2014;2014:204840.
  16. Gao D, Guo Y, Li X, Li X, Li Z, Xue M, Ou Z, Liu M, Yang M, Liu S, et al. An aqueous extract of Radix astragali, Angelica sinensis, and Panax notoginseng is effective in preventing diabetic retinopathy. Evid Based Complement Alternat Med 2013;2013:578165.
  17. Uzayisenga R, Ayeka PA, Wang Y. Anti-diabetic potential of Panax notoginseng saponins (PNS): a review. Phytother Res 2014;28:510-6. https://doi.org/10.1002/ptr.5026
  18. Yang X, Xiong X, Wang H, Yang G, Wang J. Xuesaitong soft capsule (Chinese patent medicine) for the treatment of unstable angina pectoris: a metaanalysis and systematic review. Evid Based Complement Alternat Med 2013;2013:948319.
  19. Wang L, Li Z, Zhao X, Liu W, Liu Y, Yang J, Li X, Fan X, Cheng Y. A network study of Chinese medicine xuesaitong injection to elucidate a complex of action with multicompound, multitarget, and multipathway. Evid Based Complement Alternat Med 2013;2013:652373.
  20. Ou X, Jin H, Guo L, Cui X, Xiao Y, Liu D, Huang L. Effects of balanced fertilization and soil amendment on growth and yield of Sanqi in continuous cropping. China J Chinese Materia Medica 2012;37:1905-11.
  21. Miao ZQ, Li SD, Liu XZ, Chen YJ, Li YH, Wang Y, Guo RJ, Xia ZY, Zhang KQ. The causal microorganisms of Panax notoginseng root rot disease. Scientia Agricultura Sinica 2006;39:1371-8.
  22. Sun Y, Ke J, Ma N, Chen Z, Wang C, Cui X. Effects of root rot on saponin content in Panax notoginseng. J Chin Med Mat 2004;27:79-80.
  23. Miao CP, Qiao XG, Zheng YK, Chen YW, Xu LH, Guan HL, Zhao LX. First report of Fusarium flocciferum causing root rot of Sanqi (Panax notoginseng) in Yunnan, China. Plant Disease 2015;99:1650.
  24. Hartley SE, Eschen R, Horwood JM, Gange AC, Hill EM. Infection by a foliar endophyte elicits novel arabidopside-based reactions in its host, Cirsium arvense. New Phytologist 2015;205:816-27. https://doi.org/10.1111/nph.13067
  25. Johnson LJ, de Bonth ACM, Briggs LR, Caradus JR, Finch SC, Fleetwood DJ, Fletcher LR, Hume DE, Johnson RD, Popay AJ, et al. The exploitation of epichloae endophytes for agricultural benefit. Fungal Divers 2013;60:171-88. https://doi.org/10.1007/s13225-013-0239-4
  26. Kusari P, Kusari S, Spiteller M, Kayser O. Endophytic fungi harbored in Cannabis sativa L.: diversity and potential as biocontrol agents against host plant-specific phytopathogens. Fungal Divers 2013;60:137-51. https://doi.org/10.1007/s13225-012-0216-3
  27. Mei C, Flinn BS. The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Pat Biotechnol 2010;4:81-95. https://doi.org/10.2174/187220810790069523
  28. Ma L, Cao YH, Cheng MH, Huang Y, Mo MH, Wang Y, Yang JZ, Yang FX. Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie van Leeuwenhoek 2013;103:299-312. https://doi.org/10.1007/s10482-012-9810-3
  29. Park SU, Lim HS, Park KC, Park YH, Bae H. Fungal endophytes from three cultivars of Panax ginseng Meyer cultivated in Korea. J Ginseng Res 2012;36: 107-13. https://doi.org/10.5142/jgr.2012.36.1.107
  30. Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, Jiang CL, Xu LH, Li WJ. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol 2009;75:6176-86. https://doi.org/10.1128/AEM.01034-09
  31. Kim WK, Mauthe W, Hausner G, Klassen GR. Isolation of high molecular weight DNA and double-stranded RNAs from fungi. Can J Bot 1990;68:1898- 902. https://doi.org/10.1139/b90-249
  32. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Protocols: a guide to methods and applications. San Diego: PCR Academic Press; 1990. p. 315-22.
  33. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28: 2731-9. https://doi.org/10.1093/molbev/msr121
  34. Santos SB, Carvalho CM, Sillankorva S, Nicolau A, Ferreira EC, Azeredo J. The use of antibiotics to improve phage detection and enumeration by the doublelayer agar technique. BMC Microbiol 2009;9:148. https://doi.org/10.1186/1471-2180-9-148
  35. Backman PA, Sikora RA. Endophytes: an emerging tool for biological control. Biol Control 2008;46:1-3.
  36. Zhang QH, Zhang J, Yang L, Zhang L, Jiang DH, Chen WD, Li GQ. Diversity and biocontrol potential of endophytic fungi in Brassica napus. Biol Control 2014;72:98-108. https://doi.org/10.1016/j.biocontrol.2014.02.018
  37. Hyde KD, Soytong K. The fungal endophyte dilemma. Fungal Divers 2008;33: 163-73.
  38. Tejesvi MV, Kajula M, Mattila S, Pirttila AM. Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers 2011;47:97-107. https://doi.org/10.1007/s13225-010-0087-4
  39. Eo JK, Choi MS, Eom AH. Diversity of endophytic fungi isolated from Korea ginseng leaves. Mycobiology 2014;42:147-51. https://doi.org/10.5941/MYCO.2014.42.2.147
  40. Park YH, Kim YC, Park SU, Lim HS, Kim JB, Cho BK, Bae H. Age-dependent distribution of fungal endophytes in Panax ginseng roots cultivated in Korea. J Ginseng Res 2012;36:327-33. https://doi.org/10.5142/jgr.2012.36.3.327
  41. Park YH, Lee SG, Ahn DJ, Kwon TR, Park SU, Lim HS, Bae H. Diversity of fungal endophytes in various tissues of Panax ginseng Meyer cultivated in Korea. J Ginseng Res 2012;36:211-7. https://doi.org/10.5142/jgr.2012.36.2.211
  42. Wu H, Yang HY, You XL, Li YH. Diversity of endophytic fungi from roots of Panax ginseng and their saponin yield capacities. SpringerPlus 2013;2:107. https://doi.org/10.1186/2193-1801-2-107
  43. Xing X, Guo S, Fu J. Biodiversity and distribution of endophytic fungi associated with Panax quinquefolium L. cultivated in a forest reserve. Symbiosis 2010;51:161-6. https://doi.org/10.1007/s13199-010-0062-6
  44. Keswani C, Mishra S, Sarma BK, Singh SP, Singh HB. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp. Appl Microbiol Biotechnol 2014;98:533-44. https://doi.org/10.1007/s00253-013-5344-5
  45. Bohm J, Hoff B, O'Gorman CM, Wolfers S, Klix V, Binger D, Zadra I, Kurnsteiner H, Poggeler S, Dyer PS, et al. Sexual reproduction and matingtypeemediated strain development in the penicillin-producing fungus Penicillium chrysogenum. Proc Natl Acad Sci USA 2013;110:1476-81. https://doi.org/10.1073/pnas.1217943110
  46. Jackson AJ, Walters DR, Marshall G. Evaluation of Penicillium chrysogenum and its antifungal extracts as potential biological control agents against Botrytis fabae on faba beans. Mycol Res 1994;98:1117-26. https://doi.org/10.1016/S0953-7562(09)80197-4
  47. Murali M, Sudisha J, Amruthesh KN, Ito SI, Shetty HS. Rhizosphere fungus Penicillium chrysogenum promotes growth and induces defence-related genes and downy mildew disease resistance in pearl millet. Plant Biology 2013;15:111-8. https://doi.org/10.1111/j.1438-8677.2012.00617.x
  48. Garcia M, Arriagada C, Garcia-Romera I, Ocampo JA. Are plant cell wall hydrolysing enzymes of saprobe fungi implicated in the biological control of the Verticillium dahlia pathogenesis? Crop Protect 2011;30:85-7. https://doi.org/10.1016/j.cropro.2010.09.007
  49. Liu K, Yang Y, Miao CP, Zheng YK, Chen JL, Chen YW, Xu LH, Guan HL, Ding ZT, Zhao LX. Koningiopisins A-H, polyketides with synergistic antifungal activities from the endophytic fungus Trichoderma koningiopsis. Planta Medica 2016;82:371-6.
  50. Liu K, Yang YB, Chen JL, Miao CP, Wang Q, Zhou H, Chen YW, Li YQ, Ding ZT, Zhao LX. Koninginins N-Q, polyketides from the endophytic fungus Trichoderma koningiopsis harbored in Panax notoginseng. Nat Prod Bioprospect 2016;6:49-55. https://doi.org/10.1007/s13659-015-0085-z
  51. Chen JL, Sun SZ, Miao CP, Wu K, Chen YW, Xu LH, Guan HL, Zhao LX. Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J Ginseng Res 2016;40:315-24. https://doi.org/10.1016/j.jgr.2015.09.006
  52. Chen JL, Liu K, Miao CP, Sun SZ, Chen YW, Xu LH, Guan HL, Zhao LX. Salt tolerance of endophytic Trichoderma koningiopsis YIM PH30002 and its volatile organic compounds (VOCs) allelopathic activity against phytopathogens associated with Panax notoginseng. Ann Microbiol 2016;66:981-90. https://doi.org/10.1007/s13213-015-1171-5
  53. Yang Y, Yang F, Miao C, Liu K, Li Q, Qin S, Zhao L, Ding Z. Antifungal metabolites from the rhizospheric Penicillium sp. YIM PH30003 associated with Panax notoginseng. Phytochem Lett 2015;11:249-53. https://doi.org/10.1016/j.phytol.2015.01.010
  54. Li W, Yang X, Yang Y, Duang R, Chen G, Li X, Li Q, Qin S, Li S, Zhao L, et al. Antiphytopathogen, multi-target acetylcholinesterase inhibitory and antioxidant activities of metabolites from endophytic Chaetomium globosum. Nat Prod Res 2016. http://dx.doi.org/10.1080/14786419.2015.1129328.
  55. Jin H, Yan Z, Liu Q, Yang X, Chen J, Qin B. Diversity and dynamics of fungal endophytes in leaves, stems and roots of Stellera chamaejasme L. in northwestern China. Antonie van Leeuwenhoek 2013;104:949-63. https://doi.org/10.1007/s10482-013-0014-2
  56. Gazis R, Chaverri P. Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 2010;3:240-54. https://doi.org/10.1016/j.funeco.2009.12.001
  57. Rivera-Orduna FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB. Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Divers 2011;47:65-74. https://doi.org/10.1007/s13225-010-0045-1
  58. Errasti A, Carmaran C, Novas V. Diversity and significance of fungal endophytes from living stems of naturalized trees from Argentina. Fungal Divers 2010;41:29-40. https://doi.org/10.1007/s13225-009-0012-x
  59. Wearn JA, Sutton BC, Morley NJ, Gange AC. Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol 2012;100:1085-92. https://doi.org/10.1111/j.1365-2745.2012.01997.x
  60. Sanchez Marquez S, Bills GF, Dominguez Acuna L, Zabalgogeazcoa I. Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Divers 2010;41:115-23. https://doi.org/10.1007/s13225-009-0015-7
  61. Alvarez-Loayza P, White Jr JF, Torres MS, Balslev H, Kristiansen T, Svenning JC, Gil N. Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PloS One 2011;6:e16386. https://doi.org/10.1371/journal.pone.0016386
  62. Lana TG, Azevedo JL, Pomella AW, Monteiro RT, Silva CB, Araujo WL. Endophytic and pathogenic isolates of the cacao fungal pathogen Moniliophthora perniciosa (Tricholomataceae) are indistinguishable based on genetic and physiological analysis. Gen Mol Res 2011;10:326-34. https://doi.org/10.4238/vol10-1gmr895
  63. Eaton CJ, Cox MP, Scott B. What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 2011;180:190-5. https://doi.org/10.1016/j.plantsci.2010.10.002
  64. Rai M, Agarkar G. Plant-fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 2016;42:428-38.
  65. Miao CP, Mi QL, Qiao XG, Zheng YK, Chen YW, Xu LH, Guan HL, Zhao LX. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens. J Ginseng Res 2016;40:127-34. https://doi.org/10.1016/j.jgr.2015.06.004
  66. Zhou SL, Xiong GM, Li ZY, Wen J. Loss of genetic diversity of domesticated Panax notoginseng F H Chen as evidenced by ITS Sequence and AFLP polymorphism: a comparative study with P. stipuleanatus H T Tsai et K M Feng. J Integr Plant Biol 2005;47:107-15. https://doi.org/10.1111/j.1744-7909.2005.00013.x
  67. Haas D, Defago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 2005;3:307-19. https://doi.org/10.1038/nrmicro1129
  68. Kusari S, Hertweck C, Spiteller M. Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 2012;19:792-8. https://doi.org/10.1016/j.chembiol.2012.06.004

Cited by

  1. Molecular profiling and bioactive potential of an endophytic fungus Aspergillus sulphureus isolated from Sida acuta : a medicinal plant vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2017.1315435
  2. Investigation on biosuppression of Fusarium crown and root rot of tomato (Solanum lycopersicum L.) and growth promotion using fungi naturally associated to Solanum linnaeanum L. vol.12, pp.7, 2017, https://doi.org/10.5897/ajmr2017.8777
  3. Significant in vitro antagonism of the laurel wilt pathogen by endophytic fungi from the xylem of avocado does not predict their ability to control the disease vol.67, pp.8, 2017, https://doi.org/10.1111/ppa.12878
  4. Drechmeria panacis sp. nov., an endophyte isolated from Panax notoginseng vol.68, pp.10, 2018, https://doi.org/10.1099/ijsem.0.002971
  5. Diversity of culturable endophytic fungi of Hevea guianensis: A latex producer native tree from the Brazilian Amazon vol.12, pp.42, 2017, https://doi.org/10.5897/ajmr2018.8980
  6. The effects of dark septate endophyte (DSE) inoculation on tomato seedlings under Zn and Cd stress vol.25, pp.35, 2017, https://doi.org/10.1007/s11356-018-3456-2
  7. Isolation and characterization of plumbagin (5- hydroxyl- 2- methylnaptalene-1,4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants vol.20, pp.None, 2017, https://doi.org/10.1016/j.btre.2018.e00282
  8. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy vol.546, pp.None, 2017, https://doi.org/10.1016/j.jcis.2019.03.052
  9. A transcriptome analysis uncovers Panax notoginseng resistance to Fusarium solani induced by methyl jasmonate vol.41, pp.12, 2017, https://doi.org/10.1007/s13258-019-00865-z
  10. Diversity and antimicrobial activity of endophytic fungi isolated from Securinega suffruticosa in the Yellow River Delta vol.15, pp.3, 2017, https://doi.org/10.1371/journal.pone.0229589
  11. Autotoxic Ginsenoside Disrupts Soil Fungal Microbiomes by Stimulating Potentially Pathogenic Microbes vol.86, pp.9, 2017, https://doi.org/10.1128/aem.00130-20
  12. Trichoderma panacis sp. nov., an endophyte isolated from Panax notoginseng vol.70, pp.5, 2017, https://doi.org/10.1099/ijsem.0.004144
  13. First report of Plectosphaerella plurivora causing root rot disease in Panax notoginseng in China vol.168, pp.7, 2017, https://doi.org/10.1111/jph.12901
  14. Colonization of endophyte Acremonium sp. D212 in Panax notoginseng and rice mediated by auxin and jasmonic acid vol.62, pp.9, 2017, https://doi.org/10.1111/jipb.12905
  15. A WRKY transcription factor, PgWRKY4X, positively regulates ginsenoside biosynthesis by activating squalene epoxidase transcription in Panax ginseng vol.154, pp.None, 2020, https://doi.org/10.1016/j.indcrop.2020.112671
  16. Diversity of endophytic fungi from the leaves of Vaccinium dunalianum vol.71, pp.5, 2017, https://doi.org/10.1111/lam.13345
  17. Penisarins A and B, Sesquiterpene Coumarins Isolated from an Endophytic Penicillium sp. vol.83, pp.11, 2017, https://doi.org/10.1021/acs.jnatprod.0c00393
  18. Insight to shape of soil microbiome during the ternary cropping system of Gastradia elata vol.20, pp.None, 2017, https://doi.org/10.1186/s12866-020-01790-y
  19. Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants vol.7, pp.2, 2021, https://doi.org/10.3934/microbiol.2021012
  20. Myrothins A–F from Endophytic Fungus Myrothecium sp. BS‐31 Harbored in Panax notoginseng vol.18, pp.3, 2017, https://doi.org/10.1002/cbdv.202000964
  21. Diversity, Phylogeny and Antagonistic Activity of Fungal Endophytes Associated with Endemic Species of Cycas (Cycadales) in China vol.7, pp.7, 2017, https://doi.org/10.3390/jof7070572
  22. The fungal community outperforms the bacterial community in predicting plant health status vol.105, pp.16, 2021, https://doi.org/10.1007/s00253-021-11486-6
  23. Root rot-infected Sanqi ginseng rhizosphere harbors dynamically pathogenic microbiotas driven by the shift of phenolic acids vol.465, pp.1, 2017, https://doi.org/10.1007/s11104-021-05034-4
  24. Impact of rhizosphere microorganisms on arsenic (As) transformation and accumulation in a traditional Chinese medical plant vol.28, pp.43, 2017, https://doi.org/10.1007/s11356-021-14500-6
  25. Diversity and biological activity of fungal endophytes of Zingiber officinale Rosc. with emphasis on Aspergillus terreus as a biocontrol agent of its leaf spot vol.39, pp.None, 2022, https://doi.org/10.1016/j.bcab.2021.102234
  26. Microbiomes across root compartments are shaped by inoculation with a fungal biological control agent vol.170, pp.None, 2022, https://doi.org/10.1016/j.apsoil.2021.104230