Evaluation of Baby-leaf Growth and Leaf Red Color Intensity for Amaranthus Germplasm

아마란스(Amaranthus ssp.) 유전자원의 어린잎 생육과 엽 적색도 평가

  • Lee, Jun-Gu (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Jang, Yoon-Ah (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Um, Yeong-Cheol (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Sang-Gyu (Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 이준구 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 장윤아 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 엄영철 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 이상규 (농촌진흥청 국립원예특작과학원 채소과)
  • Received : 2012.10.05
  • Accepted : 2012.12.26
  • Published : 2012.12.31

Abstract

This study evaluated the baby-leaf growth, leaf red color intensity, and phytochemical compounds, such as total phenols and total flavonoids using domestic Amaranthus accessions, to select promising germplasm for the use of baby-leaf vegetable. The 39 accessions, upper 15% of 262 Amaranthus germplasm collection showing high red color intensity in baby-leaf, measured as Hunter's a value, were primarily selected. The eleven accessions including IT199970, showing stable red color intensity in baby-leaf both in high-temperature and low temperature cultivation, were finally selected as promising germplasm for the use of baby-leaf vegetable Amaranthus. The leaf red color intensities when they were cultivated at low temperature period were generally higher than those at low temperature period, and all the eleven selected germplasm, including four Amaranthus sub-species and five unknown species, showed stable red color expression in baby-leaf. The total phenol and total flavonoid contents were also presented for finally selected germplasm including their baby-leaf fresh weights. These finally selected germplasm could be potentially used as baby-leaf vegetable resources, through fortifying the color balance of salad vegetable.

본 연구는 기능성 곡물로 이용되고 있는 아마란스(Amaranthus ssp.)를 어린잎채소 용도로 개발하기 위하여 국내에 보유되어 있는 유전자원에 대한 어린잎 생육특성, 엽 적색도 발현 정도 및 기능성 물질의 함량 변이를 평가함으로써 어린잎채소로서 이용 가능한 유망 아마란스 자원 선발을 위하여 수행되었다. 국내에 수집 보존되어 있는 아마란스 유전자원 262 종에 대하여 색도색차계로 측정한 엽 적색도 발현 정도를 기준으로 전체 자원의 상위 15%에 해당하는 39종을 1차 선발하였다. 1차 선발된 유전자원에 대하여 고온기 및 저온기의 재배를 통하여 어린잎 생육과 유전자원 별 적색소 발현을 검증 평가하여 안정적인 적색 강도를 보이는 고색도 자원을 최종 선발하였다. 아마란스의 엽 적색도는 모든 1차 선발 계통들에 있어서 고온기에 비해 저온기 재배 시 적색도 발현이 우수하였으며 2회의 재배를 통한 평균 적색도 발현 정도를 기준으로 IT199970 등 11종의 자원을 선발하였다. 이들 선발된 유전자원들에 대한 어린잎 생체중 및 총페놀 함량, 총플라보노이드 함량 정보를 제시하였다. 이들 선발 종들은 5개의 아마란스 종에 속하였으며 엽 적색도 발현이 우수하여, 향후 적색 풍미를 더하는 어린잎 샐러드 채소의 소재로서 이용 가능할 것으로 판단된다.

Keywords

References

  1. Cho, J. Y., D. M. Son, J. M. Kim, B. S. Seo, S. Y. Yang, B. W. Kim, and B. G. Heo. 2008. Effects of LEDs on the germination, growth and physiological activities of Amaranth sprouts. Kor. J. Hort. Sci. Technol. 26: 106-112.
  2. Gutfinger, T. 1981. Polyphenols olive oils. J. Am. Oil Chem. Soc. 58: 966-968. https://doi.org/10.1007/BF02659771
  3. Kataoka, I. and K. Beppu. 2004. UV irradiance increases development of red skin color an anthocyanins in 'Hakuho' peach. HortScience 39: 1234-1237.
  4. Lee, J.H . 2007. New beneficial crops amaranth and quinoa for food nutritional source. Food Indus. Nutri. 12: 29-36.
  5. Lee, J. S. and W. G. Pill. 2005. Advancing greenhouse establishment of radish, kale, amaranth microgreens through seed treatments. J. Kor. Soc. Hort. Sci. 46: 363-368.
  6. Makus, D. J. 1990. Composition and nutritive value of vegetable amaranth as affected by stage of growth, environment and method of preparation. In: Proceeding of fourth Amaranth symposium Minnesota, Minnesota Agricultural University, Saint Paul, pp. 35-46.
  7. Moreno, M. I. N., M. I. Isla, A. R. Sampietro, and M. A. Vattuone. 2000. Comparison of the free radical scavenging activity of propolis from several region of Argentina. J. Ethnopharmacol. 71: 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  8. Prakash, D. and D. Pal. 1991. Nutritional and anti-nutritional composition of vegetable and grain amaranth leaves. J. of Sci. Food Agric. 57: 573-583. https://doi.org/10.1002/jsfa.2740570410
  9. Shukla, S. and S. P. Singh. 2000. Studies on genetic parameters in vegetable amaranth. Indian J. Genet. Plant Breed. 54: 133-135.
  10. Shukla, S. and S. P. Singh. 2002. Varietal performance and foliage yield in vegetable amaranth. South Indian Horticult. 50: 241-244.
  11. Shukla, S., A. Bhargava, A. Chatterjee, and S. P. Singh. 2004. Estimates of genetic parameters to determine variability for foliage yield and its different quantitative and qualitative traits in vegetable amaranth (A. tricolor). J. Genet. Breed. 58: 169-176.
  12. Shukla S., A. Bhargava, A. Chatterjee, J. Srivastava, N. Singh, and S. P. Singh. 2006. Mineral profile and variability in vegetable amaranth (Amaranthus tricolor). Plant Foods for Human Nutrition 61: 23-28.
  13. Shukla, S., A. Bhargava, A. Chatterjee, A. C. Pandey, and A. R. A. Kumar. 2010. Genetic interrelationship among nutritional and quantitative traits in the vegetable amaranth. Crop Breeding Appl. Biotechn. 10: 16-22.
  14. Steffensen, S. K., H. A. Pedersen, R. Labouriau, A. G. Mortensen, B. Laursen, R. M. de Troiani, E. J. Noellemeyer, D. Janovska, H. Stavelikova, A. Taberner, C. Christophersen, and I. S. Fomsqaard. 2011. Variation of polyphenols and betaines in aerial parts of young, field-grown amaranthus genotypes. J. Agric. Food Chem. 59: 12073-12082. https://doi.org/10.1021/jf202969e