• Title/Summary/Keyword: univariate statistics

Search Result 169, Processing Time 0.026 seconds

Optimal bandwidth in nonparametric classification between two univariate densities

  • Hall, Peter;Kang, Kee-Hoon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.1-5
    • /
    • 2002
  • We consider the problem of optimal bandwidth choice for nonparametric classification, based on kernel density estimators, where the problem of interest is distinguishing between two univariate distributions. When the densities intersect at a single point, optimal bandwidth choice depends on curvatures of the densities at that point. The problem of empirical bandwidth selection and classifying data in the tails of a distribution are also addressed.

  • PDF

Multivariate Linear Calibration with Univariate Controlled Variable

  • Park, Nae-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.15 no.2
    • /
    • pp.107-117
    • /
    • 1986
  • This paper gives some new results on the multivariate linear calibration problem in the case when the controlled variable is univariate. Firstly, a condition under which one can obtain a finite closed confidence interval of $x_0$(unknown controlled variable) is suggested. Secondly, this article considers a criterion to find out whether the multivariate calibration significantly shortens the confidence interval of $x_0$ and supports this criterion by examples. Finally, a multivariate extension of the results in Lwin Maritz (1982) is given.

  • PDF

REAL ROOT ISOLATION OF ZERO-DIMENSIONAL PIECEWISE ALGEBRAIC VARIETY

  • Wu, Jin-Ming;Zhang, Xiao-Lei
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.135-143
    • /
    • 2011
  • As a zero set of some multivariate splines, the piecewise algebraic variety is a kind of generalization of the classical algebraic variety. This paper presents an algorithm for isolating real roots of the zero-dimensional piecewise algebraic variety which is based on interval evaluation and the interval zeros of univariate interval polynomials in Bernstein form. An example is provided to show the proposed algorithm is effective.

ROC Curve for Multivariate Random Variables

  • Hong, Chong Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.3
    • /
    • pp.169-174
    • /
    • 2013
  • The ROC curve is drawn with two conditional cumulative distribution functions (or survival functions) of the univariate random variable. In this work, we consider joint cumulative distribution functions of k random variables, and suggest a ROC curve for multivariate random variables. With regard to the values on the line, which passes through two mean vectors of dichotomous states, a joint cumulative distribution function can be regarded as a function of the univariate variable. After this function is modified to satisfy the properties of the cumulative distribution function, a ROC curve might be derived; moreover, some illustrative examples are demonstrated.

A Simultaneous Test for Multivariate Normality and Independence with Application to Univariate Residuals

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.115-122
    • /
    • 2006
  • A test is suggested for detecting deviations from both multivariate normality and independence. This test can be used for assessing the normality and independence of univariate time series residuals. We derive the limiting distribution of the test statistic and a simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we apply our method to a real data of time series.

  • PDF

The difference between two distribution functions

  • Hong, Chong Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1449-1454
    • /
    • 2013
  • There are many methods for measuring the difference between two location parameters. In this paper, statistics are proposed in order to estimate the difference of two location parameters. The statistics are designed not using the means, variances, signs and ranks, but with the cumulative distribution functions. Hence these are measured as the differences in the area between two univariate cumulative distribution functions. It is found that the difference in the area between two empirical cumulative distribution functions is the difference of two sample means, and its integral is also the difference of two population means.

INDEPENDENCE TEST FOR BIVARIATE CENSORED DATA UNDER UNIVARIATE CENSORSHIP

  • Kim, Jin-Heum;Cai, Jian-Wen
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.2
    • /
    • pp.163-174
    • /
    • 2003
  • We propose a test for independence of bivariate censored data under univariate censorship. To do this, we first introduce a process defined by the difference between bivariate survival function estimator proposed by Lin and Ying (1993) and the product of the product-limit estimators (Kaplan and Meier, 1958) for the marginal survival functions, and derive its asymptotic properties under the null hypothesis of independence. We propose a Cramer-von Mises-type test procedure based on the process . We conduct simulation studies to investigate the finite-sample performance of the proposed test and illustrate the proposed test with a real example.

Asymptotic Normality of PL estimator for interval censored bivariate life-times

  • Kang, Shin-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.245-256
    • /
    • 2000
  • Large sample properties of Life-Table estimator are discussed for interval censored bivariate survival data. We restrict out attention to the situation where response times within pairs are not distinguishable and the univariate survival distribution is the same for any individual within any pair.

  • PDF

Misspecification in Multivariate Regression

  • Shin, Min-Woong;Park, Chi-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 1980
  • Hocking, Rao, Rosenberg and Levy and Walls and Weeks have given some results for the misspecification in univariate regression model. We give similar results for a multivariate regression model.

  • PDF

Firework plot as a graphical exploratory data analysis tool for evaluating the impact of outliers in skewness and kurtosis of univariate data (일변량 자료의 왜도와 첨도에서 특이점의 영향을 평가하기 위한 탐색적 자료분석 그림도구로서의 불꽃그림)

  • Moon, Sungho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.355-368
    • /
    • 2016
  • Outliers and influential data points distort many data analysis measures. Jang and Anderson-Cook (2014) proposed a graphical method called a rework plot for exploratory analysis purpose so that there could be a possible visualization of the trace of the impact of the possible outlying and/or influential data points on the univariate/bivariate data analysis and regression. They developed 3-D plot as well as pairwise plot for the appropriate measures of interest. This paper further extends their approach to identify its strength. We can use rework plots as a graphical exploratory data analysis tool to evaluate the impact of outliers in skewness and kurtosis of univariate data.