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Asymptotic Normality of PL estimator
for interval censored bivariate life—times?

Shin-Soo Kang?

Abstract

Large sample properties of Life-Table estimator are discussed for interval censored
bivariate survival data. We restrict our attention to the situation where response times
within pairs are not distinguishable, and the univariate survival distribution is the
same for any individual within any pair.

1. Introduction

Survival data consisting of independent groups of correlated response times arise from a
variety of situations, such as event times collected from hushand and wile pairs, siblings,
litter mates, distinct components of a machine, or repeated measurements on each individual
subject. In this paper, we restrict our attention to situations where response times within
groups are exchangeable, and the marginal survival distributions are same for all individuals
within any group. Furthermore, we consider interval censored data, in which the exact event
times are not observed, only the number of failures and the number of censored individuals
are observed within a finite set of time intervals, We are intercsted in estimating marginal
survival probabilities and their variances and covariances from the observed counts.

The life-table analysis has been used widely to summarize failure time or event time data
without assuming any specific parametric distributions for response times. Kaplan and Meier
(1958) introduced the product limit (PL) and the actuarial (AL) estimates of survival
probabilities for univariate analysis with independent failure times. The PL estimate is
consistent under the assumption that censoring only occurs at the end of time intervals.
Breslow and Crowley (1974) showed that a necessary and sufficient condition for the

consistency of the AL estimate of a survival probability is that FY satisfies
F(H=1-[1/(1+ cH(D)] *, (1)

for some constant ¢>0, where H(t) is a cdf of iid censoring times and absolutely continuous
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with density A(t) on a finite time interval, and F°(#) is a cdf of iid failure times. They
suggest that the uniform distribution is a good approximation for the censoring distribution in
many cases that satisfy (1).

Suppose we have time intervals A,=(¢,-1, ], for h=1,2,---, m. Then, define
g, = Pr(an individual dies in A, | he survives beyond A, ;)
P, = Pr(an individual survives beyond A,)

The estimator of P, P, is equal to (1— g)(1— gy (1— gn), where 7, is an
estimate of g,  The PL estimator, for example, uses 2,= D,/ N,, where D, is the observed

number of failures in A, and N, is the number of observations ‘‘at risk’’ at time £,—;.

When the data contain correlated response times, we use the same life-table procedure to get
estimates of the marginal survival probabilities that was described above for the case when
all response times are independent. This provides appropriate estimates of survival probabilities
and large sample properties are examined for this life-tahle estimator.

Turmbull’s (1974) non-parametric likelihood function is based on the product limit estimate
with censored observations on the left and some on the right. He introduced an algorithm to
get a ‘‘self-consistent estimator’’ and showed that the estimator is unique consistent
maximum likelihood estimate under fairly general assumptions with existence of failures
during any time interval. A concept of a ‘‘self-consistent estimator’’ was defined by Efron
(1967). Campbell (1981) and Hanley and Pames (1983) studied non—parametric maximum
likelihood estimation for a bivariate survival function when the response times are interval
censored. These methods assume that there is a clear distinction between each member of a
pair, such as male and female siblings, right and left eyes. Campbell (1981) showed that the
resulting maximum likelihood estimator is a self-consistent estimator. He also examined the
existence and uniqueness of the estimator, and showed that the matrix of the second partial
derivatives of the loglikelihood function is non-positive definite. Consequently, the loglikelihood
is unimodal and the MLE is unique up to possible flat spots. Horvath (1983) showed the
consistency of a the multivariate PL estimator, computed from multivariate exact failure times,
under the assumption that the joint survival function of multivariate failure times is
continuous.

There 1s another approach based on counting processes to prove consistency of the PL
estimator. Fleming and Harrington (1991) and Andersen et al. (1993) considered N(t), the

number of observed failures in [0, #I, as univariate counting process and Y(#) is the number
at risk just prior to time #. They assumed that the survivor function of a failure time random

variable T is absolutely continuous and the number at risk, Y(¢), converges to ©° as n goes

to oo to prove uniform consistency of PL estimator using the Lenglart (1977) inequality.
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Independence of failure and censoring times was assumed in all papers reviewed above.
This assumption is also used throughout this paper.

2. Life-Table analysis

Life-table analysis is one of the oldest statistical methods used to analyze survival data and
it is widely used in medical, actuarial, and industrial reliability studies. Little consideration,
however, has been given to multivariate life-table analysis.

We assume members of a group are not distinguishable from each other, and the marginal
event time distribution is the same for each response. Under this situation, we consider the
problem of estimating the common marginal survival probabilities through a non-parametric
methods using life—tables.

2.1 Random Censorship Model

The bivatate case is mainly considered in this chapter for notational convenience, but more
general multivariate cases involving groups with more than two response times, or groups
with different numbers of response times can be derived in a similar manner.

Let X'={(XY, X?z)} for 7=1,2,---,n be independent pairs of true failure times with the
joint survival distribution S(s, = Pr(X%>s, XL 0. Let W={(W;, Wy},

for i=1,2,+,n, be independent pairs of censoring variables from the joint censoring
distribution C(s, )= Pr(W;>s, Wp>?). The variables X ;,X p,8a,8 5 are observed, where
Xy = min(X3, Wa),  Xp= min(X%, W), and
a--={ L if X=X} _
Y 0 if X;=W;, where j=1,2
Let G(s,D)=Pr(Xy>s, Xp> be the joint distribution of (X ;,Xz). We will assume

that (XDZ],XOZ'Z is independent of (W, Wy). Most procedures for life-table analysis are
based on this assumption.

This bivariate model was previously considered by Campbell (1981), Dabrowska (1988), and
Pruitt (1991). Campbell studied non-parametric maximum likelihood — estimation for the
situation where there is a clear distinction between the first member and second member of
each pair. Dabrowska introduced a bivariate analogue of the Kaplan-Meier estimator, but
Pruitt describes conditions under which this estimator does not yield a proper survival
function.

2.2 Life-Table quantities

Consider a study consisting of 2 subjects, where failure times are subject to right
censoring. Furthermore, consider the situation where each subject is inspected at a finite set
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of m times 0<#;<{f<--<t, 0, so exact response times are not observed. Instead the
responses are interval censored, ie., it is only known whether a subject failed or was
censored between two adjacent inspection times, Denote the #m time intervals by
Ap=(tp—1,t1,h=1,2,--, m, where f,=0. An individual is said to be ‘“‘at risk’’ at time
tp if the event has not yet occurred by time ¢, and the individual was not censored before
time £#,. The quantities used to construct a life-table are:

Ny = Number of observations ~at risk ~ at time #,_;
= ZI{I(X,Q t—1) + (X > th-)}

Dj = Number of failures in A, = (#,_y, t;]
= DX € Au sy =1) + (Xp= Ay, 8, = 1)

Cy = Number of withdrawals in A, = (t,_;, t,]

= Zl{l(Xﬂ EAh: 811 = O) + I(XzZEAh, 622 = O)}

where I(x) is an indicator function, which is 1 if x is true, and zero otherwise.
The conditional failure probability in time interval A, is
g» = Pr(an individual dies in A, | he survives beyond An—).
The unconditional survival probability is
P, = Pr(an individual survives beyond Aj).

Kaplan and Meier (1958) first studied the properties of the PL(product limit) estimator and
the AlL(actuarial) estimator of P, in the univariate case. The fundamental papers of Kaplan
and Meier (1958) and Chiang (1961), Gilbert (1962), Efron (1967), Breslow (1969,1970),
Thomas (1972), Breslow and Crowley (1974) contributed to the development of the theoretical
properties of these estimators. Breslow and Crowley (1974) outlined a general theory for the

large sample properties in the univariate case where any subject is assumed to respond
independently of any other subject.

We will consider properties of the PL and AL estimators for P, when the study consists
of #» pairs of subjects where each subject responds independently of any other subject from

any other pair, but responses for subjects in the same pair can be correlated. The PL
estimator ignoring pairs is defined as

B= U-)A =) (1= 7)

e D A N -
where thFk-. This will be called the “'PL estimator ignoring pairs or groups’’ or just
h
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the “'PL estimator’’. In the next section the large sample properties of P, will be
cstablished.

3. Large sample properties of ﬁ;;

Let X,;,7=1,2,-,n be #n independent and identically distributed life times with survivor
function S(8, and let Xy, i=1,2,*-,n be iid life times with the same survival function

S(#). However X ; is not necessarily independent of X p. Properties of P, will be

examined for both the no censoring case and the censoring case.

3.1 The case with no censored obhservations

Establishing the consistency of 75;1 is straightforward when there is no censoring. Define

f: (fllyf12,'"sflmsf21:"';f2nzsf31s"',me, """ ’fmly“'yfmm)'; ,
&= (&n. &z Eimy So1o s Soms E3t0 s Egms 0 s Cmls s Conm) s

where f,, is the number of pairs where the first unit is observed to fail during time interval
(th—1,t,] and the second unit is observed to fail during time interval (¢ y_;,¢,], and &y
is the joint failure probability corresponding to f,;. Then, f has a multinomial distribution

with parameters # and ¢ It follows that as #n—o0o, the distribution of Vo TN (F— 0
converges to a multivariate normal distribution with mean 0 and covariance matrix,

diag () —¢t.

Now define the following quantities:
f] = (uly uZ’ uB, T, um)y
where u;, = i‘ f4 is the number of failures during time interval (f,_;,7,] experienced by
=
the subjects listed first in the pairs, and
f2 = (01702’03’-”,07”);
where v,= il F is the number of failures experienced during time interval (f#,.;,%,] for
&

the subjects listed second in the pairs. Also define a vector of marginal failure probabilities
as
7T= (ﬂ:l’ﬂ'-Zy.“)]Tm);

where

ty
7= [ 1dS()| = Pr(an individual dies in (.-, %))
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is the failure probability for time interval (f,_;,#,]. These quantities can be expressed as

linear functions of f or ¢ as follows:

f1 = (-[me ®_L)f= Af,
fo = (L' QI ,xmf = Bf,

where
11-..1 OO...O 00...0 ...... 00...0
A - OO....O 11....1 OO....O ...l... 00 .O
000 000 00-0 - 111
1000 1000 1000 - 100--0
B .= |010+0 01040 010-0 - 010--0|
000‘...1 000‘...1 OOO‘...]_ ...‘... 000....1
Here, 1,5, denotes the identity matrix of order m and 1=(1,1,---,1)" is a vector of order
m.

Since either member of the pair could be arbitrarily designated as the first member, the
restriction, 7= A¢{= B¢ is imposed. Let (/,',f;’)" be f and (z',7)be z". It follows

that as #n—oo, the distribution of V# *(f —nx’) converges to a multivariate normal

distribution with mean 0 and covariance matrix,

3 = [ 4 |(diae(r)— A B] @
diag(n) — o’ diag(&)— nrn
diag( ) — nn’ diag(n) — nx’ ]

. — U+ v ) e e
Now consider qh=—%, where N,= ﬁhuﬁ- ﬁhvz— 1s the number of individuals '‘at
h 1= 7=

risk’’. Each /q\, is a smooth function of #. Thus Va( /c}—q*)“JN(O,nEq-) as
n—co and X - can be obtained from the Delta method.

It immediately follows that ¢, is a consistent estimate of

gt = Tl 2+ 7/ 2 . Tp _ S(ty—1) — S(24)
h - ! - - 7
fhrﬂ 4 2,,”1'/2 ﬁhﬂ-i S(tp—1)

1=

where S(#,) is the true unknown value of the underlying marginal survivor function. Finally,

-, - . ., . . *
P, is also a consistent estimate of P, because ZF, is a continuous function of ¢ , Let us

now turn to the censored case, which is more complicated than the no censoring case.

3.2 The case with censored observations
Let X,, i=1,2,,n be =n independent and identically distributed failure times with
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survivor function S(#) and let X 5, 7=1,2,*, »n be iid failure times with the same survivor
function S(H. X,; and X, need not to be independent. Let W,, i=1,2,---,n be =
independent and identically distributed censoring times with survivor function C(#), and let
W, i=1,2,~,n be iid censoring times with the same survivor function C(J.
Independence of W,; and Wj is not necessary but it is assumed that the censoring
mechanism does not affect the true life times, Define

F= (Fi1, F1zs s Fims Fors = s Foms Fa1 0% Fams 200" Fots s o)
and

§=(&u, Sz Sims Co10 770 Soms Earsvoy Sy v Cote s Em) s
where fyis the number of pairs such that the first unit is observed to fail during time
interval (#,-,,%;] and the second unit is observed to fail during time interval (¢, _1,?¢x],
and &, is the joint failure probability corresponding to fy. Define

d=(dy.dp, " dims a1, Aomy dz1, " Aoy "o oy o)’
and

V= (V11 Vig, s Vims Vols " Vams V31s s Vamy 00" S Vmds s V) s
where d,; is the number of pairs such that the first unit is observed to fail during time
interval (#,_;,%;] and the second unit is censored during time interval (#y_1,¢x], and
Ve 18 the joint probability corresponding to d . Define

¢=(cu,Cizs™s Cims Cats " Cams €315 7" Camy "~ s Coml s """ s Conm)
and

y= (711’ V2o "ty Vims VoL " Yom» V3o "% Yams """ s il s 7’mm)’y
where ¢y is the number of pairs such that the first unit is censored during time interval
(t4—1. ;] and the second unit is observed to fail during time interval (¢y_;,¢x], and 7u
is the joint probability corresponding to c¢gy. Finally, define

g= (g, &2, 81m> 8215, Bom» &315 7" Gam, "0 Emls s Em)
and

7= (I, 120" W 1205 7% s Dams 131575 Dams =" Donds ™" Do)
where g, is the number of pairs such that the first unit is censored during time interval
(t4—1, ] and the second unit is censored during time interval (fy-1,fx], and 7m is the
joint probability corresponding to gr- These vectors are combined into large vectors

V=(f',d,c,8),

and

O=(,v,r.n).
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Then, V has a multinomial distribution with parameters # and . It follows from the

multivariate central limit theorem that as #—c0, the distribution of V# '(V—#6)
converges to multivariate normal distribution with mean 0 and covariance matrix,

diag(@) — OO’ .
Now define the following quantities:

fi=Cup, sy, U, Wi, W, s W)
where %, is the number of failures and w;, is the number of censored units during time
interval (#,-1,f,] experienced by the subjects listed first in the pairs, and

fo=(v1, 09, Um, 21,22, ", Zm)
where v, is the number of failures and z, is the number of censored units experienced
during time interval (#,-;,#,] for the subjects listed second in the pairs.

d= (T, Xy, Tys T1, T, ", To)

where m;, and ¢, are the failure probability and censoring probability, respectively such that

£

T~ Pr(to (X< 6, X5 < W) = [ CloldS(x)|

B

and
= [, Sl

These quantities can be expressed as linear functions of V or @ as follows:

fi = QV,
fZ = RV’
¢ = QO= RO,
where
_ (A A0 0
QZm><4mZ ( 00 A A )’
_ (B0 B 0
R2m><4m2 ( 0 B O B )7
11...1 OO...O OO...O ...... OO...O
A = OO....O 11.-..1 OO.'..O ....... 00....0
00....0 OO....O OO:..O ...-... 11....1
1000 1000 1000 - 1000
B .= |010-0 0100 0100 - 010--0|

0001 0001 0001 - 0001
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Let (f;",/’) be f and (¢,¢) be ¢*. It follows that as #—o0, the distribution

of \/—n“]( f*—nqb*) converges to a multivariate normal distribution with mean 0 and
covariance matrix,

T = [ %](diceto) - 06)1@ R1. )

Mh+ Uy

As in the no censoring case, ¢,= N
h

, where N,= Sh(ui-i- v;+w;+z;), and the

4;'s are smooth function of % Thus, Va( /c}—q*)”vN(O,an*) as n—ooand X » can be
obtained from (3) by the Delta method based.

It follows that g, is a consistent estimate of

% /24 /2 Ty
qn = = .
gh (m;+ o+ 1)/2 2}; (m;+ 1)
Since
gh(ﬂz’—i_ ) = S(ty-1)C(ty-1),
then
[Ir
. ), c@lasml
Tn = S(t-)C(tp—1) ° @
In general q}f may not be equal to ( }js(lt) )(th) , S0 ¢ is not necessarily a consistent
r—1

estimate of ¢, Furthermore, if we have 2n independent observations that are subject to

random censorship as described in section 2.1, E( c/];) has exactly the same formula as

equation (4).
4. Discussion
The large sample properties of the actuarial(AL) estimate can be derived in a similar way.

Z{h+ Uy
Nw—(wp+ci)/2

For the AL estimator, ?]71 is equal to and qf is

[, clas

S C(t-) = 0.5 [, SIACR]
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Thus, consistency properties of the PL and AL estimators in the univariate case are the same
as those for the PL and AL estimators when pairs are ignored. Variances of the PL and AL
estimators are affected by correlation within pair and this is derived by Kang &
Koehler(1997).

Breslow and Crowley (1974) proposed a necessary and sufficient condition, relating the
survival and censoring distributions, for the consistency of the AL estimator for the univariate
case. They examined finite sample bias of the AL estimates for estimating the survival
probability through simulation study and concluded that the bias will not be serious unless the
number of intervals is fewer than ten.
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