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Multivariate Linear Calibration

with Univariate Controlled Variable

Nae Hyun Park*

ABSTRACT

This paper gives some new results on the multivariaie linear calibration problem in
the case when the controlled variable is univariate. Firstly, a condition under which one
can obtain a finite closed confidence interval of x,(unknown controlied variable) is
suggested. Secondly, this article considers a criterion to find out whether the multivariate
calibration significantly shortens the confidence interval of x, and supports this criterion
by examples. Finally, a multivariate extension of the results in Lwin Maritz (1982) is

given.

1. Introduction

Consider the following multivariate linear calibration model;
yi=a+B Zite i=1, - #
yoi=a+B xoteu j=1, = k (1.1
where 2};‘,5, ;\_10,-’5, gi’s and go,-’s are p-dimensional random variables, JE':-’S are g-dimensional
known variables, %, is a g-dimensional unknown variable, aisa px1 vector of unknown
parameters, and B is a gxp matrix of unknown parameters.
Assume that e's and €'s are independent and identically distributed(i.i.d.) N, (0, |8
random variables. The multivariate calibration problem is to make statistical infer-ences
about %o based on Xi’s, 2:0,-’5 and {;’s. The calibration is called controlled (random)

calibration when }f;’s and x, are controlled(random) variables(see Brown(1982)). In
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random calibration we can make inferences about %o based on the following model

instead of (1.1).
xi:z'+Ayi+ei, 1=1, -, 1. (1.2)

Note that we can predict %o by the standard multivariate regression theory in (1. 2).
Therefore throughout this paper i and Xo are assumed to be controlled(or fixed)
variables.

For p=g=1(univariate calibration) various estimation methods have been proposed by
many authors and there are many controversies on which estimation method is desirable
(see Hoadley (1970), Brown(1979), Lwin and Maritz (1980, 1982), Hunter and Lamboy
(1981), and references listed therein). For the multivariate calibration Draper and Smith
(1981, page 125) touch on the case of p=1, ¢>1 which is ill-specified case since %o
can not be completely determined. Recently Brown(1982), Oman and Wax(1984) and

Naes(1985) have considered many interesting multivariate calibration problems for >1,
> 1.

This paper presents some new results for the multivariate linear calibration when the
controlled variable is univariate. Section 2 studies a confidence interval of x, and
provides a condition under which one can derive a finite closed confidence interval of
%o, which is an extension of Graybill (1976, page 282). Section 3 considers the confidence
interval of x, by assuming that a large calibration experiment has been performed.
Section 3 also proposes a condition under which a confidence interval of x, with
multivariate calibration is significantly shorter than with univariate calibration. Section
4 treats the linear compound estimation which is an extension of the results in Lwin and

Maritz (1982). Section 5 gives some examples to back up the results of Section 3.

2. Confidence Interval of x,
The model (1.1) can be rewritten as follows;
yi=F'x*+e, i=1, -, n
groj:F’:_co*—i—go,-, J=1, =, k, 2.1
where /= (q, By, ic,»*z(l, J_ti')’, 1=1, -, n and {co*:(l, y.co')’. Assume _e,~’s and ~e(,,»'s
are i.i.d. N, (9, V) random variables. It can be easily shown that i‘co:(BS‘lB')“f?S“

(¥,—a) is the natural maximum likelihood estimator of x,, where
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a4

k N [44
Fo=(1/R) X, Jon F:(;é ):<Z'Z>-LZ' Y, Z'= (%, oy 20,

Y= (g1, v )y S=(1—q+ k=2 (Y=ZF)' (Y-ZF) +j>::1(yof—yo> (Jor=30"
Brown (1982) proposed the various estimators for x, and compared these by specific
examples. ~

Now, let us consider an interval estimation of x,. To do this, it can be easily shown
that ~
Fo— b= B2~ No(0, (k7204 (Z'2) 7 2*1V)
and
(n—q+k=2)S~W,_si12(-1 V),
where W,(. | V) denotes a Wishart distribution. Without loss of generality, we may

n A
assume Y x;=0 in this section. Since ¥,—&—B’ x, and S are independent,

i=1~

(?0“@‘3/750),5-1 (fo_@_B'{o) n—p—q+k—1 P
Frn T (X X) T (g rh—p e @.2)

by the distribution of Hotelling 7% statistic, where X'= (Jf], ., Jf,,) and F,,, denotes a

F distribution with degrees of freedom # and ». From (2.2) we can obtain the following

100(1—7) % confidence region of Xos

[kt n 2y (X X)*gcoj-l’g—n“_f’?‘%_”;z_ﬁl; (Fo—&—B' 20)" S™*(Ja—&— B’ %)

SFpucpoqriotin 2.3

where F.,..» denotes the upper 1007-th percentiles of F,,,. It should be noted that Brown

(1982) derived (2.3) in a rather complicated way by introducing a multivariate ¢

distribution. This paper’s approach is more comprehensible and shorter than Brown’s.

When p=g=1, (2.3) reduces to the following;
(8275 = (asssrst £ 22) | 57 =28/ Go= Dt (o= D/

_(n‘lJf‘k‘l) t27l+k—377/2§0, (2 4)

where

B:élx;(yf“?) /élxiz, y=Q1/n ,.z::ly"’

R n ~ k
st=(n+k—3) 'I[ZL (y:—5—Px)*+ Zl(y0;~yo) ZJ, and £,,, is the upper 100r-th percentiles
of the #*distribution with % degrees of freedom. Graybill(1976, page 282) showed the

following;
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If (B2/8%) —t2,no0ira) 3 X2 is positive, then (2.4) gives a finite closed
i=1
interval of x,. 2.5)
when g=1 and p>1, (2.3) reduces to
(§o~@~§ xp)’ St (fo*@*@xo) = (n‘“r/i?““rxoz/_}:]l x:2) T, -4, 2.6)
where &=3=(1/m) 31y, f=3 %ip:/ 3 22 and T, =[(1+k—3)p/ (n+k—p—2)]
FP7n+12—1>—2:r-
It is easily observed that (2.6) can be written as follows;

g(x)=ax2—2bx,+c<0 2.7
where a=§"S-1 - To,,z/éilx,-z, b:(?owj)’S”@ and
c= (?o‘?),s_’"(.?o‘}:’)*(n_l’Fk‘I) T, 2

It is shown in Appendix that if >0, then (2.7) leads to the following closed interval;
@ (Fo—3) ST - vDIsx<a [(3,—5) S+ v D1, (2.8)

where D=5b?—aqac. This is an extension of (2.5).

REMARK 2.1 In a size 7 test of Hy; 8=0 versus H,; 8+0, we reject H, if ¢>0. In
practice one would not employ the model if §=0 and it is unwise to use the data leading
to 8=0.

REMARK 2.2 In (2.3) Brown(1982) proved that if p=g and BS“B’—(X’X)‘1
[(n—q+k—2)p/(n—p—q+k—1)] Fsyn_p_gsrr_1,- is positive definite, then the confidence

region is a closed ellipsoid. But he did not give any answer when p#g.

3. Effect of Multivariate Calibration

In this section the effect of multivariate calibration will be considered. For simplicity

we treat the case when a large calibration experiment is performed with p=2 and g=1.

When a large calibration experiment is performed, that is, when # is large, in (1.1),
we can use the following model;

_yoj:gl+B' Xo+€ois j=1, -, &, @.1n

where a, B are known, %o is an unknown parameter and e:(,j’s are 1.i.d. Np((')., (v,

known) random variables. Note that 2,=(BV"! B’)"t BV-! (§,—a) is the usual maximum
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likelihood estimator of o The following facts about X, are useful in our development.
{%NNq(J_Co, k-1 (BV"'B)™YH (3.2)
k({fo—fco)’BV'lB’(:i'o—fCo)quza (3.3
where 7.2 denotes a chi-square distribution with ¢ degrees of freedom.
When ¢g=1 and p=2, 100(1—7) % confidence interval of x, can be obtained from
k(Xo—%x0) B VatEs (3.4)
where
a'=(on, @)y f'=(B B2y Jo'=(Fony For)
fo= (é/ V‘l@“é’ V-t (?o'l}) and y..* is the upper 1007-th percentiles of .2 In

3.4) let
v (”12 100'10'2>
P00 gt /,

where p is the correlation coefficient of v and ¥,.. Then 100(1—7) % confidence interval
of x, is

%o~ VH, Sx,2 20+ VH, (3.5)
where H,=[0,2 0,2(1—p%) %021/ R(Bi2 02+ B2 0P =2 p01 02 51 B2).

If we use y, only, then 100(1—7#) % confidence interval of x4 is

Xo— (0/18:]1) \/thz//"’§xn§i‘o+(ﬂl/|5ﬂ) VAL lR (3.6)
where %= (Fo1—a) /8. Hence the ratio of the lengths of the above two confidence
interval is given by

K =1length of (3.6)/length of (3.5)

= A1+ (1—p) Lo~ (B201/5 gs) |2
REMARK 3.1 The larger (1—p%) "t [p— (8:0:/0: g,)]? is the larger K is and the
multivariate calibration is effective. When p=35;0,/8:02 length of (3.5)=length of

(3.6) and there is no reason to employ the multivariate calibration model.
4. Linear Compound Estimation

When p>1 and ¢=1, (L.D becomes

yi:?"*’@xi4‘€i, i=1, =y 0

%’oi:q+@xo+€on j=1, =, k& .1
where yo,/= (Jous % Yoss)s 3¢'= (rs vy 92)y = (@, =0y a) and B'=(By = Bs).
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Assume that g,-’s and foj‘s are i.i.d. random variables with mean zero and covariance
matrix V., Also assume that a and £ are known.

Consider the class of linear estimators ¢(~§0): 0+/~1’ Jo of xo, where A= (A, ony 2).

Linear compound estimation is to find A, Aj, +«+, 1, that minimize
D= ; Er[¢ (31 —x: 1%, 4.2)

where Er denotes the expectation with respect to the distribution function F of i for
each fixed x. Lwin and Maritz(1982) suggested this method to investigate the
controversy existing in the univariate calibration. This section's results are the
multivariate extensions of their results.

First rewrite (4.2) as
0u= 3 Qo) tnd Vit B[X (@t 629 1+28 (=2 X' (a+ ).

From 89,/02,=0 and 89./62=0, one can readily see that
Ao=X— (a+5x) (V+p5 s s, A=(V+ B85’ s.2) 7 Bs.?,

where ¥= (l/n)gnjL Xx; and §,.2= (1/n)i=il(x,~-7c)2. Hence we arrive at the optimal estimator
given by 1
2 (Jo) =X[1—8.2 f/(V+ 4" 5.2) THEI s BN (Vs BB7) (Jo—a). 4.3)
Using formular (A.2.1) in Cook and Weisberg (1982) we get the following reasonable
form;
2(Fo) = (148257 VB 1%+ (1+s,2 BV ) s BV F—a). (4.4)
Note that x*(yo) is a weighted average of ¥ and x¥(%,), where x”(?o)z(é’ V‘l@)*@’
V'l(_yo—ix) is the natural maximum likelihood estimawtor of x, when all parameters of
(4.1) are known and the errors are normal.
The estimator x* (?0) is a biased estimator in general while x* (?0) is unbiased. In fact
Eelx*(30)1=20+ (1+8:2 8" VL 8) 71 (B—x,).
The mean squared errors of x* (_yo) and x“(jo) are
MSE[x*(30) 1= (R0?) "1 [(6% 5.2) / (1+5.2 62) 12+ [ (xo—%) / (1 +5.2 62) ]2,
MSE[x%( 21:0)] = (k0%) -1, respectively,
where 6= @’ V'lé. Hence the mean squared error of x*( yo) is less than that of

xM(3,) if
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(to—X)2 <k 82 (2+072s.70).

As Lwin and Maritz(1982) pointed out, if 6%s.® is small and if the estimation is
restricted to the calibration range, then x* (?0) is likely to be preferable to x“(%‘:o).

In the remainder of this section, the inverse estimator will be compared with the
linear compound estimation. The wrong inverse regression model is

Xi=To+ Ty Yt +Tp Yoit€i i=1, =, 7

and the inverse estimator of x, is

n n "‘._1
H(E) =t 3T+ E@-D 3/ [ T (3D | Gom ),
where 3= (£, £, ***» £5) i the least squares estimator of z’. The maximum likelihood

estimators of 8 and V are, assuming normality,
b=(msD ™' X (xi—%) ¥
2 P J

S*=/m B (g 3 =5 B
Replacing § and V by b and S* in (4.3), x*(3,) coincides with x7(3,). Therefore,
though x7 (}10) is derived from the wrong model, it is supported by the compound
estimation approach. However one can not find a confidence interval of x, from ¥7(3,),

which seems a major demerit of the inverse estimator.

5. Examples

This section introduces two examples to back up Remark 3.1 of Section 3. The data
in Table 1 are a part of the wheat quality data in Brown(1982). y, and y, are infrared
reflectance measurements and w is the percentages of protein content for a wheat of
size 21,

The relationship between j_z’:( v, ¥o) and x=w—w is estimated from observations 1
to 17. Then treat each x;, i=18,19,20,21 as the unknown x, and use the corresponding
i as the current observation Yo. It should be noted that 2=1. The scatter diagram of

the above data suggests a linear calibration model (4.1) and a normal error distribution.

The maximum likelihood estimates of @, § and an unbiased estimate S of V are given

(al) (103.94118) ; (A) (-4.4975)
&,/ \358.64697/, - \B) \—2.73327

as follows;

1
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Table 1. Wheat Quality Data

Primber " I I w (=01 L w)
1 108 361 10.73 —0.54177
2 107 361 11.05 ~0.22177
3 110 362 9. 86 —1.41177
4 105 362 1. 41 0.13823
5 104 362 11.57 0. 29823
6 113 367 9.42 ~1.85177
7 113 362 .82 ~2.45177
8 103 360 1181 0.53823
9 97 351 12.33 1. 05823

10 % 353 12.93 1. 65823
11 97 352 12. 69 1. 41823
12 % 355 13.13 1.85823
13 106 357 10.41 ~0.86177
14 93 351 13.57 2.29823
15 113 363 9.26 ~2.01177
16 110 363 9.82 —1.45177
17 97 355 12.81 1. 53823
18 108 366 10.93 —0.34177
19 104 360 11.61 0.33823
20 | 114 366 9.46 —1.81177
21 %6 355 12.85 1.57823

S:<812 812):<1.97901 3. 50096)
3.50096  7.9075 /.
(p=512/51 $,=0. 8850)
Note that we can reject the null hypothesis of @:0 at a level of 5%. When both ¥, and

Si2 S$,?

¥: are used, the confidence interval length of x, is by (2.8)
L1 =2 at \/E,
where a and D were defined in Section 2. When only y; is used, the confidence interval

length of x, is by Graybill (1976)

L,=2 h—l‘/<t2157n2/:§xi2> (Fa—yorrhm kY 2,

where A= (‘312/312)—<t215,,,2/i§lx.-2>. Table 2 gives the values of L, L, and R=L,/L,
for r=0.05 and for each y, Table 2 shows that the multivariate calibration is very

effective in this example.

It should be remarked that since K— I+ (1—p) "t [p— (B251/815)72 =2.1, one can
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Table 2. Confidence Interval Lenths and Their Ratios

» | L, L, R-Ly/L,
(108, 336) ‘ 0. 68764 1. 97487 2.87194
(104, 360) 1 1.11777 1. 95363 1. 74779
(114, 366) 1.18621 2. 08069 1. 75406

(96, 350) 0.92521 2.03375 2. 19814

expect R=-2.1 which nearly agrees with Table 2.

Now compare the actual predictions. Let £ be the maximum likelihood estimates of
%, =18, 19, 20, 21, A natural criterion for prediction accuracy is

21

PA=100 Z(x,-—fc,-)z/_zzl: X,
=18

18

the percentage of unexplained variation. When both y, and y, are used PA=3.6, where
as PA=12.8 if we use y, only. In this respect the multivariate prediction is much

better than the univariate prediction.

Table 3. Changed Wheat Quality Data

. X=—W—W
e s e | eenta

1 i 108 361 10.73 1 —0. 54177
2 107 361 11.05 —0.22177
3 110 362 9. 86 —1.41177
4 105 362 11.41 0.13823
5 104 361 11.57 0. 29823
6 113 370 9.42 —1.85177
7 113 368 8. 82 —2.45177
8 103 360 11.81 0. 53823
9 97 350 12.33 1. 05823
10 95 353 12.93 1. 65823
11 97 352 12. 69 1.41823
12 96 351 13.13 1. 85823
13 106 360 10. 41 —0. 86177
14 93 350 13.57 | 2.29823
15 113 366 9.26 | —2.01177
16 110 369 9.82 —1.45177
17 97 355 12.81 1.53823
18 108 363 10.93 —0. 34177
19 104 360 11.61 0. 33823
20 114 366 9. 46 —1.81177
21 96 350 12.85 1.57823
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The above example is a case when the multivariate calibration is highly effective.
Next consider an example in which the multivariate calibration can hardly shorten the
confidence interval length. First change the data of Table 1 artificially to get a small
K. The modified data are given in Table 3.

By similar computation one can get K=1.01427, 6=0.61544 and Table 4. Since K is
near to 1, one can primarily expect that the multivariate calibration does not shorten
the length of the confidence interval. In fact the multivariate calibration can not
significantly shorten the length of the confidence interval when compared with the
confidence interval length of the univariate calibration as Table 4 shows. In the actual
predictions by using the maximum likelihood estimates PA=12.8 when both v and y,
are used, while PA=13.6 when only y, is used. Therefore the multivariate prediction

is not much better than the univariate prediction in this example.

Table 4. Confidence Interval Lengths and Their Ratios

5’ L L, | R=Ly/L,
(108, 363) 1. 83552 1. 97487 i 1. 07592
(104, 360) 1. 81083 1. 95363 ‘ 1. 07886
(114, 366) 1. 78252 2. 08069 1.16728
( 96, 350) 1. 76446 | 2. 03375 1. 15262

Appendix

If >0 and if D=b>—ac>0, then g(x,) <0 leads to a finite closed interval, Note that
b*=[(3,—3)’ S~ §1

=[(Fo= 3" S B1L(F—5)" S 8/

= (3=’ S 88 S 3

=trl(Fo= 9S85 S (30— 3)]

= (3=’ S Go—Ptr(3F S

=[(Fo=7" S Go—»1(F S B,

where tr(A) denotes the trace of a square matrix A. Hence

D=[(3—3)" S (Jo=PIF' S f=al (3—3)" S™* (Jo—3) — (0™ "+ k%) T2,.]

= (T2 /£ 57) LG9 S G-I +atn i+ kY T4,
Since S-! is positive semidefinite, D> if a>0. Therefore (2.7) leads to (2.8) if a>0.
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