• 제목/요약/키워드: unit weight of concrete

검색결과 333건 처리시간 0.031초

압축강도 120 MPa, 단위중량 20 kN/m3 고강도 경량 콘크리트 부착-슬립 거동 평가 (Evaluation of Bond-Slip Behavior of High Strength Lightweight Concrete with Compressive Strength 120 MPa and Unit Weight 20 kN/m3)

  • 구동길;오준환;유성원
    • 한국건설순환자원학회논문집
    • /
    • 제11권1호
    • /
    • pp.39-47
    • /
    • 2023
  • 최근 구조물의 장대화로 인하여 고강도 재료의 경량화 요구가 빈번해지고 있는 실정이다. 하지만 현재까지는 압축강도 120 MPa, 단위중량 20 kN/m3 정도의 고강도 경량 콘크리트를 구조부재에 적용하기 위한 콘크리트와 철근의 부착 특성에 관한 연구가 부족한 실정이다. 따라서 본 논문에서는 압축강도 120 MPa, 단위중량 20 kN/m3 정도의 고강도 경량 콘크리트 108개의 시편을 제작하여 직접 인발 부착실험을 수행하였고, 실험결과와 현행 설계기준과 비교하여 부착특성을 평가하였다. 솔리드버블은 단위중량 감소에 비해서 압축강도 및 탄성계수 감소효과는 상대적으로 적게 나타나, 초경량화를 위해서는 반드시 적용되어야 할 재료로 판단되며, ACI-408R의 부착강도 산정식과 실험결과는 비교적 유사한 것으로 판단되며, 더 낮은 압축강도, 단위중량의 콘크리트보다 더 큰 슬립 및 매개변수 값을 가지는 것으로 나타났다.

폐 EPS 재생골재의 공극구조와 경량골재큰크리트의 단열성능에 관한 연구 (A Study on the Pore Structure of Recycled Aggregates Made of EPS Waste and Insulation Performance of Lightweight Concrete)

  • 탁현철;정민수;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2002년도 학술논문발표회
    • /
    • pp.91-96
    • /
    • 2002
  • This study is to investigate the insulation performance of lightweight concrete using recycled lightweight aggregate, to develop lightweight concrete products which have an excellence on the insulation performance are satisfied with properties of building materials. As a result of this study, recycled EPS aggregate is considered to have an independent pores which is closed by dense partitions. So, it is showed that the insulation performance of lightweight concrete using recycled EPS aggregate are excellent. Especially, in the case of lightweight concrete under conditions of replacement ratio over 100%, it is considered that insulation performance is very excellent as thermal conductivity is showed about 0.2kcal/mh$^{\circ}C$. According to considering the relation between ultrasonic pulse velocity, unit weight and thermal conductivity through the graph, the result of relation between ultrasonic pulse velocity, unit weight and thermal conductivity on the graph expressed their high interaction shown as direct proportion on the graph. So that it is possible to extract the insulation performance of lightweight concrete using recycled EPS aggregate by ultrasonic pulse velocity and unit weight.

  • PDF

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

인공경량굵은골재 혼합비율에 따른 경량콘크리트의 기건단위질량 및 압축강도 특성 (The Unit Weight and Compressive Strength Properties of Lightweight Concrete by the Mixing Ratio of Artificial Lightweight Coarse Aggregate)

  • 김도빈;김영욱;오태규;김정현;반준모;최세진
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.218-219
    • /
    • 2018
  • This study analyzed the unit weight and compressive strength properties of lightweight concrete using high volume blast furnace slag powder by the mixing ratio of lightweight coarse aggregate to investigate the properties of lightweight concrete using domestic artificial lightweight aggregate.

  • PDF

유리섬유 혼입 기포콘크리트의 배합변화에 따른 ,압축강도 특성에 관한 연구 (The Study on Compressive-Strength Property of the Aerated Concrete using Glass Fiber by Mixing Ratio)

  • 허재원;김효열;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study was to analyze the compression strength research by aerated concrete as mixing ratio This Study used foaming-agent and produced aerated concrete by pre-foam way that is used in construction site. An experiment changes unit cement amount, w/c and the glass fiber mixing rate and 'measured capacity change, unit capacity weight and compressive strength. The results obtained from experimental study are as following; Research to reduce unit capacity weight in condition more than unit cement amount 500kgf is considered should be gone side by side. The highest compressive strength result appeared in aerated concrete that cement amount 600kgf and w/c ratio $45\%$, $50\%$. compressive strength was increased maximum $34%$ when glass fiber $0.7\%$ addition cause by coherence enlargement to enlargement of cement paste and glass fiber addition per unit volume

  • PDF

광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구 (A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문 발표회
    • /
    • pp.49-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of prefoamed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/㎠ or more compressive strength, when was unit weight 0.8t/㎡. In the case of the same unit weight of concrete, it is influenced by w/c of foam agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufatured with the different factors in mix design and also present optimum mix proportion.

  • PDF

광물성 기포제를 이용한 경량기포콘크리트의 물리적성질에 관한 실험적 연구 (A Experimental Study on the Physical properties of Lightweight Foamed Concrete Using Mineral Foam Agent)

  • 유제준;이한승;배규웅;이상섭;연규봉
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.49.1-52
    • /
    • 2003
  • The objective of this study the mechanical characteristics of preformed lightweight foamed concrete using the mineral foam agent which has high lightness, and strength. The compressive strength of lightweight foamed concrete using mineral foam agent are about 2 times degree high those the of lightweight foamed concrete using vegetable foam agent. Lightweight foamed concrete was able to obtain the result of 50kg/$\textrm{m}^3$ or more compressive strength, when was unit weight 0.8t/$\textrm{m}^3$. In the can of the same unit weight of concrete, it is influenced by w/c of loan agent ratio. The paper present extensive data on characteristics of compressive strength of the concrete manufactured with the different factors in mix design and also present optimum mix proportion.

  • PDF

동슬래그 혼합 잔골재를 이용한 콘크리트의 물리적 특성 (Physical Properties of Concrete mixed with Fine Sand and Copper Slag)

  • 이진우;김경민;배연기;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.15-18
    • /
    • 2003
  • Development of the construction industry generally exhausts natural aggregate. Hence it is problem to the lack of supply and quality deterioration, so the resource saving and protection of environment is made an effort through recycling by-product. This study presents that fundamental properties of concrete which used cooper slag as alternate sand of low fineness modulus and plan of cooper slag as concrete aggregate. Testing factors are concrete's slump, air contents, unit weight and compressive strength. The results of this study are as follows; (1) Concrete slump is generally satisfied with the condition but is inferior to the others in substitution rates 30%. Also air contents are 3.1-4.1% and go up according to increase substitution rate. (2) Unit weight increase in 1.1% as the mixing ratio of cooper slag argument 10%. (3) compressive strength of cooper slag concrete is similar to plain and especially higher 11-15% in W/C 45%, 50%. So it seems that aggregate mixed cooper slag is suitable to low water-cement ratio mixture.

  • PDF

고성능 경량 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of High Performance Lightweight Polymer Concrete)

  • 성찬용
    • 한국농공학회지
    • /
    • 제37권3_4호
    • /
    • pp.72-81
    • /
    • 1995
  • This study was performed to evaluate the mechanical properties of high performance lightweight polymer concrete using fillers and synthetic lightweight coarse aggregate. The following conclusions were drawn. 1. The unit weight of the G3, G4 and G5 concrete was 1.500t/m$^3$, 1.506t/m$^3$ and 1.535t/m$^3$, respectively. Specially, the unit weights of those concrete were decreased 33~35% than that of the normal cement concrete. 2. The highest strength was achieved by heavy calcium carbonate, it was increased 27% by compressive, 95% by tensile and 195% by bending strength than that of the normal cement concrete, respectively. 3. The elastic modulus was in the range of 8.0 x 104~ 10.4 x lO4kg/cm2, which was approximately 35~42% of that of the normal cement concrete. Normal cement concrete was showed relatively higher elastic modulus. 4. The ultrasonic pulse velocity of fillers was in the range of 2, 900m/sec, which was showed about the same compared to that of the normal cement concrete. Heavy calcium carbonate was showed higher pulse velocity. 5. The compressive, tensile, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight.

  • PDF

조강형 AE감수제를 사용한 콘크리트의 강도발현 특성 (Characteristics of concrete intensity using high early strength AE water reducing agent)

  • 김정태;이승한;장석수;정용욱;여인동
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.793-796
    • /
    • 2008
  • 최근 콘크리트 구조물 공사에서는 공기단축을 통한 경제성 확보와 동절기 초기동해방지를 위하여 콘크리트의 조기강도 발현을 요구되고 있다. 이에 본 연구에서는 조강형 AE감수제의 종류별 단위시멘트량과 양생온도 조건에 따른 압축강도발현 특성, 공기량 및 슬럼프 등의 경시변화를 검토하여 재령 24시간에 거푸집 조기 제거가 가능한 압축강도 5MPa을 발현시킬 수 있는 최적 조건을 제시하고자 하였다. 실험결과, 온도 $15^{\circ}C$에서 거푸집조기 제거가 가능한 압축강도 5MPa 발현 시간은 조강형 나프탈렌계 감수제를 사용한 경우 단위시멘트량 $330kg/m^3$에서 표준형 감수제에 비하여 10시간 빠른 22시간, $360kg/m^3$에서는 7시간 빠른 20시간, $390kg/m^3$에서는 4시간 빠른 18시간으로 나타났다. 또한 온도 $5^{\circ}C$에서는 조강형 나프탈렌계 감수제를 사용한 경우 단위시멘트량 $330kg/m^3$에서 표준형 감수제에 비하여 10시간 빠른 32시간, $360kg/m^3$에서는 7시간 빠른 30시간, $390kg/m^3$에서는 4시간 빠른 27시간으로 나타났다. 따라서 양생온도가 $10^{\circ}C$ 높아짐에 따라 압축강도 5MPa 도달시간은 10시간이 단축되었다.

  • PDF