• Title/Summary/Keyword: unit weight of concrete

Search Result 336, Processing Time 0.032 seconds

Characteristics of Thermal Conductivity of Concrete Containing Fine Bottom Ash Aggregates (바텀애시 경량골재를 사용한 콘크리트의 열전도율 특성)

  • Park, Ji-Hun;Jung, Hoe-Won;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.596-603
    • /
    • 2020
  • In this paper, an experimental study was conducted to investigate the applications of bottom ash, which is an industrial by-product obtained from thermal power plants. Bottom ash was used as fine aggregate in this study, and an experiment was conducted to determine the characteristics of the bottom ash aggregate. In addition, 25, 50, 75, and 100% contents of crushed (natural) fine aggregate were replaced with bottom ash aggregate to produce concrete mixture including bottom ash. Thereafter, test results of the unit weight, ultrasonic velocity, compressive strength, and thermal conductivity of bottom ash concrete were obtained. Moreover, the effect of the curing ages of 28 and 91 days on the material characteristics of bottom ash concrete were identified. Test results showed that bottom ash used as fine aggregate had pozzolanic reaction. Finally, based on the extensive experimental results, relationships between thermal conductivity and unit weight, ultrasonic velocity, and compressive strength was suggested.

Revision of Representative Truck's Weight to Power Ratio in S. Korea (우리나라 대표 트럭의 총중량/엔진성능 재정립)

  • Kim, Young Rok;Jeong, Jun Hwa;Lee, Suk Ki
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • PURPOSES : The purpose of this study is to revise the weight to power ratio of the representative truck in S. Korea. So far, S. Korea has been using the unit lb/hp, and the construction machines were not considered in the evaluation of the performance of trucks. METHODS : This study was performed to recommend the use of ISO system of units, and to analyze the weight to power ratios of the representative trucks in S. Korea, including the dump trucks, concrete mixer trucks, and asphalt and concrete diffusers. RESULTS: From this study, the 85 percentile value of the weight to power ratio of the trucks in S. Korea's was found to be 103.6 kg/kw. CONCLUSIONS : The performance standard for the representative truck has to be increased upward, considering the travel pattern of the dump trucks, concrete mixers, and asphalt and concrete diffuser trucks, travel distances, narrow area (work zone) of operation, and the saving in construction budget for climbing lane. Based on this study, the weight to power ratio of the representative truck in S. Korea could possibly be revised to 100~110 kg/kW.

Aggregate Effects on γ-ray Shielding Characteristic and Compressive Strength of Concrete (콘크리트의 감마선 차폐특성 및 압축강도에 대한 골재의 영향)

  • Oh, Jeong-Hwan;Mun, Young-Bum;Lee, Jae-Hyung;Choi, Hyun-Kook;Choi, Sooseok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.357-365
    • /
    • 2016
  • We observed the ${\gamma}-ray$ shielding characteristics and compressive strength of five types of concrete using general aggregates and high-weight aggregates. The aggregates were classified into fine aggregate and coarse aggregate according to the average size. The experimental results obtained an attenuation coefficient of $0.371cm^{-1}$ from a concrete with the oxidizing slag sand (OSS) and oxidizing slag gravel (OSG) for a ${\gamma}-ray$ of $^{137}Cs$, which is improved by 2% compared with a concrete with typical aggregates of sand and gravel. In the unit weight measurement, a concrete prepared by iron ore sand (IOS) and OSG had the highest value of $3,175kg{\cdot}m^{-3}$. Although the unit weight of the concrete with OSS and OSG was $3,052kg{\cdot}m^{-3}$, which was lower than the maximum unit weight condition by $123kg{\cdot}m^{-3}$, its attenuation coefficient was improved by $0.012cm^{-1}$. The results of chemical analysis of aggregates revealed that the magnesium content in oxidizing slag was lower than that in iron ore, while the calcium content was higher. The concrete with oxidizing slag aggregates demonstrated enhanced ${\gamma}-ray$ shielding performance due to a relatively high calcium content compared with the concrete with OSS and OSG in spite of a low unit weight. All sample concretes mixed with high-weight aggregates had higher compressive strength than the concrete with typical sand and gravel. When OSS and IOS were used, the highest compressive strength was 50.2 MPa, which was an improvement by 45% over general concrete, which was achieved after four weeks of curing.

Corrosion Inhibition Properties of Steel bars in Reinforced Concrete Using Superplasticizer with Air Entrained Agent (고성능AE감수제를 사용한 콘크리트의 철근부식 저항성)

  • Lee, Mun-Hwan;Jung, Mi-Kyung;Oh, Se-Chul;Bae, Kyu-Woong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.149-160
    • /
    • 2000
  • As systematic methodologies are required for the evaluation on the durability of reinforced concrete structure, it is necessary to study and examine every factor which deteriorates the durability of structures. This paper aims to define factors affecting rebar corrosion and to establish a basis for a prediction of serviceability, regarding a state of harmful corrosion as a state when crack begins on the surface of concrete. The study results are followings; The corrosive current has changed by types of mixture, and this property enables the evaluations of corrosion resistance by mixture and concrete cover. The specimen using AE superplasticizer has better corrosion-resistance properties than non-AE specimen, as well those having low W/C and high unit cement weight. The procedure for calculation of durable year in this study is able to use as an indicator to establish mixture factors such as unit cement weight, W/C, amount of admixture, etc.

  • PDF

A Study on the High-Flowing Concrete with Low Unit Weight of Cement

  • Si Woo Lee;Hong Shik Choi;Sang Chel Kim;Gweon Heo
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.318-321
    • /
    • 2000
  • Most compressive strengths commonly used in the construction field are in a range of 240 to 300 kgf/$\textrm{cm}^2$ at 28 days. To get this rage of strengths, however, high-flowing concrete requires cementitious binders more than 400 to 450 kg/$\textrm{cm}^2$ for preventing segregation and sedimentation of aggregates. This amount of cementitious binder generates a large emission of excessive hydration heat, which may consequently induce harmful cracks in concrete structure. In order to reduce excessive hydration heat, thus, this paper aims at fabricating a high-flowing concrete under the condition that cement content is kept as low as 350kg/$\textrm{cm}^3$ by using viscose agents. In a parametric study, effects of cement types such as a ternary blended cement and Type V on he physical characteristics of high-flowing concrete were evaluated. In addition, the influence of viscosity was also investigated by applying two different viscose agents, one in a range of 6,000 to 10,000 cps and the others of 10,000 to 14,000 cps. In terms of chemical admixtures used in concrete mixture, the superplasticizer was Sulfonated Melamine-Formaldehyde Condensate with about 30,000 of molecular weight, and main component of viscose agent was HPMC (Hydroxy Propyl Methyl Cellulose). Slump flow was fixed at 50cm with different dosages of superplasticizer in weight.

  • PDF

Study on Characteristics of Lightweight Aggregate Concrete as Types of Lightweight Aggregate (경량골재 종류 변화에 따른 경량콘크리트의 특성 연구)

  • Park, Dae-Oh;Sa, Soon-Heon;Ji, Suk-Won;Choi, Soo-Kyung;Yoo, Taek-Dong;Seo, Chee-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.67-70
    • /
    • 2007
  • As construction industry is requiring competitive power and technique in national construction market with rapid fluctuation of construction environment and development, requirements upgrading performance in construction materials are increasing. But, national lightweight aggregate and lightweight concrete's inappropriateness when produced are also increasing. And there are not international standard of aggregates in using these construction materials because standards and characteristics of aggregate in each countries are different. Therefore, in this study, lightweight aggregate acquired due to wide range of use is tested and mixed for concrete to gain practicality and set the authorized manual in international. Also, basic data will be proposed to set a standard for concrete by analyzing lightweight aggregate characteristics. When lightweight aggregate absorptivity is high, concrete shows low strength and when it's density is low, concrete shows low weight of unit volume. Furthermore, compressive strength of lightweight aggregate is steep in first and longtime material age is tendency to cause low strength increasing rate.

  • PDF

An Experimental Study on the Properties of Admixtures for Concrete (콘크리트용 혼화재의 특성에 관한 실험적 연구)

  • Bae, Su-Ho;Chung, Young-Soo;Park, Kwang-Su;Lee, Joon-Gu
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.115-125
    • /
    • 1999
  • The purpose of this experimental research is to investigate the properties of workability and strength of the concrete containing admixtures such as silica fume, fly ash, ground granulated blast-furnace slag, and rice husk ash. For this purpose, the workability and the strength of the concrete containing each admixture were tested and analyzed according to the unit weight of binder and the replacement ratio of each admixture. As a result, considering their workability and strength, the existence of minimum binder weight and optimum replacement ratio of concrete containing admixture to plain concrete were obtained for each admixture.

Expansive Properties of Concrete with Variable Curing Condition Using Expansion Admixture (팽창재를 이용한 콘크리트의 양생환경에 따른 팽창특성)

  • 홍상희;김정진;강두용;류현기;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.143-146
    • /
    • 1999
  • This study is intended to investigate the properties of expansion of concrete under various curing environment with expansive additives. In construction field, expansive additives, which are anaiable to prevent from the diverse cracks caused by drying shrinkage are not expected to accomplish the expantion we expected because of both the absence of the know ledge change, loss of weight and dynamic of elasticty under various unit contents of expansive additives and curing condtion.

  • PDF

An Experimental Study on the Physical Properties of Porous Concrete (투수 콘크리트의 물리적 특성에 관한 실험적 연구)

  • 채창우;정문영;이형우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.166-171
    • /
    • 1999
  • Porous concrete contains about 20% voids after compaction so that it has high permeability which secures underground water resources. It is introduced in domestic since 1980' but has problems such as lack of optimized mixture, low strength and durability, efflorescence and other defects, etc. In this study, several mixture were designed based upon site works, and test specimens for compressive strength, tensile strength, flexual strength and permeability, were prepared in a laboratory. After 28days of curing, every performance was tested to find optimum mixture. The mixture was proposed as 380kg/㎥ of unit cement weight, 32% of W/C 10∼13mm of aggregate.

  • PDF

A Fundamental Study on the Vafiation of Quality by the Freezing of Admixture Agent for Concrete (콘크리트용 혼화제의 동결에 따른 품질변화에 관한 기초적 연구)

  • 이건철;한경익;이진규;윤기원;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.65-68
    • /
    • 1996
  • As a fundamental study on the quality control according to the freezing of admixture agent for concrete, this study instends to investigate the variation of quality of admixture according to the freezing by analyzing flow, unit weight, and compressive, tensil, flexural strength of cement mortar using admixture agent before and after freezing.

  • PDF