• Title/Summary/Keyword: uniqueness theorem

Search Result 135, Processing Time 0.018 seconds

ANALYSIS OF MALARIA DYNAMICS USING ITS FRACTIONAL ORDER MATHEMATICAL MODEL

  • PAWAR, D.D.;PATIL, W.D.;RAUT, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.197-214
    • /
    • 2021
  • In this paper, we have studied dynamics of fractional order mathematical model of malaria transmission for two groups of human population say semi-immune and non-immune along with growing stages of mosquito vector. The present fractional order mathematical model is the extension of integer order mathematical model proposed by Ousmane Koutou et al. For this study, Atangana-Baleanu fractional order derivative in Caputo sense has been implemented. In the view of memory effect of fractional derivative, this model has been found more realistic than integer order model of malaria and helps to understand dynamical behaviour of malaria epidemic in depth. We have analysed the proposed model for two precisely defined set of parameters and initial value conditions. The uniqueness and existence of present model has been proved by Lipschitz conditions and fixed point theorem. Generalised Euler method is used to analyse numerical results. It is observed that this model is more dynamic as we have considered all classes of human population and mosquito vector to analyse the dynamics of malaria.

A NEW CONTRACTION BY UTILIZING H-SIMULATION FUNCTIONS AND Ω-DISTANCE MAPPINGS IN THE FRAME OF COMPLETE G-METRIC SPACES

  • AHMED AL-ZGHOUL;TARIQ QAWASMEH;RAED HATAMLEH;ABEDALKAREEM ALHAZIMEH
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.749-759
    • /
    • 2024
  • In this manuscript, we formulate the notion of Ω(H, θ)-contraction on a self mapping f : W → W, this contraction based on the concept of Ω-distance mappings equipped on G-metric spaces together with the concept of H-simulation functions and the class of Θ-functions, we employ our new contraction to unify the existence and uniqueness of some new fixed point results. Moreover, we formulate a numerical example and a significant application to show the novelty of our results; our application is based on the significant idea that the solution of an equation in a certain condition is similar to the solution of a fixed point equation. We are utilizing this idea to prove that the equation, under certain conditions, not only has a solution as the Intermediate Value Theorem says but also that this solution is unique.

THE NAVIER-STOKES EQUATIONS WITH INITIAL VALUES IN BESOV SPACES OF TYPE B-1+3/qq,

  • Farwig, Reinhard;Giga, Yoshikazu;Hsu, Pen-Yuan
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1483-1504
    • /
    • 2017
  • We consider weak solutions of the instationary Navier-Stokes system in a smooth bounded domain ${\Omega}{\subset}{\mathbb{R}}^3$ with initial value $u_0{\in}L^2_{\sigma}({\Omega})$. It is known that a weak solution is a local strong solution in the sense of Serrin if $u_0$ satisfies the optimal initial value condition $u_0{\in}B^{-1+3/q}_{q,s_q}$ with Serrin exponents $s_q$ > 2, q > 3 such that ${\frac{2}{s_q}}+{\frac{3}{q}}=1$. This result has recently been generalized by the authors to weighted Serrin conditions such that u is contained in the weighted Serrin class ${{\int}_0^T}({\tau}^{\alpha}{\parallel}u({\tau}){\parallel}_q)^s$ $d{\tau}$ < ${\infty}$ with ${\frac{2}{s}}+{\frac{3}{q}}=1-2{\alpha}$, 0 < ${\alpha}$ < ${\frac{1}{2}}$. This regularity is guaranteed if and only if $u_0$ is contained in the Besov space $B^{-1+3/q}_{q,s}$. In this article we consider the limit case of initial values in the Besov space $B^{-1+3/q}_{q,{\infty}}$ and in its subspace ${{\circ}\atop{B}}^{-1+3/q}_{q,{\infty}}$ based on the continuous interpolation functor. Special emphasis is put on questions of uniqueness within the class of weak solutions.

A pedagogical discussion based on the historical analysis of the the development of the prime concept (소수(prime) 개념 발전의 역사 분석에 따른 교수학적 논의)

  • Kang, Jeong Gi
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.255-273
    • /
    • 2019
  • In order to help students to understand the essence of prime concepts, this study looked at the history of prime concept development and analyzed how to introduce the concept of textbooks. In ancient Greece, primes were multiplicative atoms. At that time, the unit was not a number, but the development of decimal representations led to the integration of the unit into the number, which raised the issue of primality of 1. Based on the uniqueness of factorization into prime factor, 1 was excluded from the prime, and after that, the concept of prime of the atomic context and the irreducible concept of the divisor context are established. The history of the development of prime concepts clearly reveals that the fact that prime is the multiplicative atom is the essence of the concept. As a result of analyzing the textbooks, the textbook has problems of not introducing the concept essence by introducing the concept of prime into a shaped perspectives or using game, and the problem that the transition to analytic concept definition is radical after the introduction of the concept. Based on the results of the analysis, we have provided several pedagogical implications for helping to focus on a conceptual aspect of prime number.

Towards remote sensing of sediment thickness and depth to bedrock in shallow seawater using airborne TEM (항공 TEM 을 이용한 천해지역에서의 퇴적층 두께 및 기반암 심도 원격탐사에 관하여)

  • Vrbancich, Julian;Fullagar, Peter K.
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.77-88
    • /
    • 2007
  • Following a successful bathymetric mapping demonstration in a previous study, the potential of airborne EM for seafloor characterisation has been investigated. The sediment thickness inferred from 1D inversion of helicopter-borne time-domain electromagnetic (TEM) data has been compared with estimates based on marine seismic studies. Generally, the two estimates of sediment thickness, and hence depth to resistive bedrock, were in reasonable agreement when the seawater was ${\sim}20\;m$ deep and the sediment was less than ${\sim}40\;m$ thick. Inversion of noisy synthetic data showed that recovered models closely resemble the true models, even when the starting model is dissimilar to the true model, in keeping with the uniqueness theorem for EM soundings. The standard deviations associated with shallow seawater depths inferred from noisy synthetic data are about ${\pm}5\;%$ of depth, comparable with the errors of approximately ${\pm}1\;m$ arising during inversion of real data. The corresponding uncertainty in depth-to-bedrock estimates, based on synthetic data inversion, is of order of ${\pm}10\;%$. The mean inverted depths of both seawater and sediment inferred from noisy synthetic data are accurate to ${\sim}1\;m$, illustrating the improvement in accuracy resulting from stacking. It is concluded that a carefully calibrated airborne TEM system has potential for surveying sediment thickness and bedrock topography, and for characterising seafloor resistivity in shallow coastal waters.