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ANALYSIS OF MALARIA DYNAMICS USING ITS
FRACTIONAL ORDER MATHEMATICAL MODEL

D.D. PAWAR, W.D. PATIL∗ AND D.K. RAUT

Abstract. In this paper, we have studied dynamics of fractional order
mathematical model of malaria transmission for two groups of human
population say semi-immune and non-immune along with growing stages
of mosquito vector. The present fractional order mathematical model is
the extension of integer order mathematical model proposed by Ousmane
Koutou et al. For this study, Atangana-Baleanu fractional order derivative
in Caputo sense has been implemented. In the view of memory effect of
fractional derivative, this model has been found more realistic than inte-
ger order model of malaria and helps to understand dynamical behaviour
of malaria epidemic in depth. We have analysed the proposed model for
two precisely defined set of parameters and initial value conditions. The
uniqueness and existence of present model has been proved by Lipschitz
conditions and fixed point theorem. Generalised Euler method is used to
analyse numerical results. It is observed that this model is more dynamic
as we have considered all classes of human population and mosquito vector
to analyse the dynamics of malaria.
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1. Introduction

The concept of fractional calculus emerged through the consequences of the-
ory of calculus in seventeenth century by Isaac Newton, a well known British
scientist, as well as Gottfried Leibnitz, a self-taught German mathematician.
Fractional calculus deals with the definitions of classical calculus in the form of
generalised fractional order [1]. Most of the scientists like Riemann, Caputo, Li-
ouville, Grunwald Letnikov etc. defined fractional order derivatives and integrals
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in their respective forms [2]. Scientists and researchers prefer to apply fractional
calculus in the field of science and engineering like chemistry and physics [3],
economics and finance [4], image processing [5], biology and biotechnology [6],
signal processing [7] and control systems [8].
In the view of memory property, existence of non-local operator and excellent
factuality, fractional calculus has played significant role in the formation of
more dynamic and efficient mathematical models. Scientists and researchers
have applied fractional operators to define mathematical models for different
epidemics considering various cases and constraints. T. J. Anastasio et al. [9]
have described dynamics of fractional order mathematical model of brain stem
vestibulo-oculomotor neurons. Ozalp et al. [10] have explained fractional order
SEIR model with vertical transmission using reproductive number. Fractional
order tuberculosis infection model including the impact of diabetes and resis-
tant strains has been analysed by N. H. Sweilam et al. [11]. Carl Pinto M. A.
et al. [12] demonstrated fractional mathematical model for malaria transmis-
sion control strategy. Pawar D. D. et al. [13] have proposed fractional order
mathematical model for tuberculosis with two line treatment and analysed it
thoroughly by applying generalised Euler method successfully. Kumar Deven-
dra et al. [14] have proposed the mathematical model with non-integer order
with consideration of vaccination, anti malarial drug and control strategy for
mosquitoes by spraying. Ousmane Koutou et al. [15] have designed mathemat-
ical model of malaria transmission taking into account the immature stages of
vectors following the non-immune and semi-immune types of human population.
Recently, researchers and scientists have formulated fractional order mathemat-
ical models using Atangana-Baleanu derivative which satisfies Lipschitz condi-
tion. Khan I. et al. [16] have applied Atangana-Baleanu fractional derivative to
formulate mathematical model of human blood flow in nano fluids. Khan M. A.
et al. [17] have proposed a fractional order mathematical model for tuberculosis
with relapse via Atangana–Baleanu derivative in Caputo sense. Uçar S. et al
[18] have analysed basic SEIRA model by transforming it into fractional order
with Atangana-Baleanu derivative.
Our present model is a novel extension of integer order mathematical model
of malaria transmission dynamics proposed by Ousmane Koutou et al. [15] to
fractional order mathematical model in the form of time dependent system of
fractional order differential equations by applying Atangana-Baleanu derivative.

2. Preliminaries

2.1. Fractional calculus - brief summary. In this section, we have presented
some basic definitions of fractional derivatives and integrations, demonstrated
by various scientists. The nomenclature of definitions has been given the name
of the respective scientist. In view of the role of Mittag-Leffler function in the
definition of Atangana-Baleanu fractional order derivative, it has been defined.
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Definition 2.1. [1], [2] The Mittag-Leffler function of one parameter is denoted
by Eα(z) and defined as

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
α ∈ C, Re(α) > 0. (1)

Definition 2.2. Atangana-Baleanu fractional order derivative in Caputo sense
[11]
Let g : [a, b] → R be a bounded and continuous function then Atangana-
Baleanu fractional derivative in Caputo sense of order 0 < α ≤ 1 is defined as

ABC
a Dα

t g(t) =
M(α)

(1− α)

∫ t

a

Eα

(
−α (t − q)α

(1− α)

)
g′(q)d q (2)

where Γ(.) is the gamma function and M(α) = 1 − α + α
Γ(α) is normalisation

function.

Definition 2.3. Atangana-Baleanu fractional order integral
Let g : [a, b] → R be a bounded and continuous function. The corresponding
fractional integral concerning to Atangana-Baleanu fractional order derivative
of order 0 < α ≤ 1 is defined as in [11] is

ABC
a Iαt g(t) =

(1− α)

M(α)
g(t) +

α

M(α)Γ(α)

∫ t

a

(t − q)α−1 g(q)d q (3)

where M(α) = 1− α + α
Γ(α) is normalisation function.

Theorem 2.4. Let g : [a, b] → R be a bounded and continuous function then
the following results hold as in [11]

∥ABC
a Dα

t g(t) ∥ ≤ M(α)

(1− α)
∥g(t)∥, where ∥g(t)∥ = maxa≤ t≤ b | g(t) |,

Further, the Atangana-Baleanu derivative fulfil the Lipschitz condition [11]
∥ABC
a Dα

t g1(t) −ABC
a Dα

t g2(t)∥ ≤ L ∥g1(t)− g2(t)∥

where 0 < α ≤ 1 is the order of fractional derivative.

2.2. Analysis of generalised Euler method [GEM]. In this section, we
are presenting extension of generalised Euler method as explained in [10], [13]
for a system of fractional order n number of linear and non-linear differential
equations as

aD
α
t yi(t) = fi(t, y1(t), y2(t), y3(t), . . . , yn(t)) 0 < α ≤ 1, t > 0 (4)

with the initial conditions yi(0) = yi0 , for i = 1, 2, 3, . . .n
We have to find the solution in finite interval [0, a]. Assume that yi(t), Dα

a yi(t), . . .
for all i′s are continuous on [0, a]
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The general formula for generalised Euler method (GEM)
for tj+1 = tj + h for all j = 0, 1 2 3 . . . k such that h is sufficiently small is

yi(tj+1) = yi(tj) + fi(t, y1(tj), y2(tj), y3(tj), . . . , yn(tj))
hα

Γ(α+ 1)
(5)

for all i = 1, 2, . . . n.

3. Fractional order model formation

In this section, we have proposed fractional order mathematical model con-
sidering two groups of human population, growth stages of mosquito vector and
family of classes of mature mosquito vector. This model is the extension of inte-
ger order model of malaria transmission dynamics proposed by Ousmane Koutou
et al. [15] along with the addition of susceptible class of mosquito vector. The
fractional derivative is defined in Atangana-Baleanu fractional order derivative
in Caputo sense. In order to define the revised model, we have considered human
population in two different groups as non-immune and semi-immune with refer-
ence to variance in immunity. There are lot of medical parameters which play
vital role to differentiate human population in various classes such as HIV/ AIDS
infection, lack of awareness about malaria prevention parameters, age group of
individual class etc.
We denote Nh(t), the total number of individuals in human population and con-
sidered to be constant such thatNh(t) = Sn(t) +En(t) + In(t) +Ss(t) +Es(t) +
Is(t) + Rs(t) ,where Sn(t), En(t), In(t), Ss(t), Es(t), Is(t), Rs(t) denote the
class of non-immune susceptible, non-immune latent, non-immune infected and
semi-immune susceptible, semi-immune latent, semi-immune infected and semi-
immune recovered classes of human individual respectively. The mosquito vector
has been classified into various stages as E(t), L(t), P (t), A(t) denoting stages of
eggs, larvae, pupae and adult female at the moment t respectively and then it ex-
tends to class of susceptible Sm(t), latent Em(t) and infected Im(t) mosquitoes.
The total number of individuals in adult female mosquito population A(t) is
given by A(t) = Sm(t) +Em(t) + Im(t). In this model, we have considered that
infected classes of both groups further extend to semi-immune recovered class of
human population.
The rate at which constant recruitment of individual human including birth is
taken as Λh. Rate of individual human natural death is f h at various stages
assumed to be constant. p be the probability of recruitment to be non-immune
susceptible human individual and 1−p be the probability of recruitment to semi-
immune susceptible human individual. The rate of transfer from semi-immune
latent to semi-immune infected human individual is νs, rate of transfer from
semi-immune infected to semi-immune recovered is δs. Rate of loss of immunity
there by shifting to semi-immune susceptible from recovered class is βs. The
rate of transfer from non-immune latent to non-immune infected and rate of
transfer from non-immune infected to recovered class is taken as νn and δn re-
spectively. The rate of mortality from malaria of non-immune and semi-immune
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infected classes are denoted by γn and γs respectively. The rate of infection
of non-immune susceptible class and semi-immune susceptible class of human
population by malarial parasite say kn and ks respectively are

kn = cmnns
Im
Nh

ks = cmsns
Im
Nh

where ns be the average number of bites per mosquito per unit time. cmn and cms

are probabilities that an infected mosquito bite lead to infection in non-immune
susceptible human class and semi-immune susceptible class respectively.
The rate of infection to susceptible mosquitoes from infected human say km is

km = csmns
Is
Nh

+ cnmns
In
Nh

+ c̄sm ns
Rs

Nh

where cnm is probability of susceptible female mosquito bite to an infected
non-immune human individual and transfers the infection to susceptible female
mosquito. csm is the probability that susceptible female mosquito bite to semi-
immune infected human transfers infection to susceptible female mosquito.
c̄sm is the probability that a bite from susceptible mosquito to semi-immune
recovered class transfers infection to the mosquito.
In mosquito population growth cycle, we have taken four main stages as egg,
larvae, pupae and adult with the rate of transfer from eggs to larvae, larvae
to pupae and from pupae stage to adult female mosquitoes are sE , sL and sP
respectively. The natural death rate at the stage egg, larvae and pupae female
are dE , dL and dP respectively. The transfer parameter b is considered as the
intrinsic egg laying rate. We have assumed that while selecting suitable site for
laying eggs, the adult mosquitoes ensures complete growth of all developmental
stages egg, larvae, pupae and finally adults and thereby KE , KL, KP denote
available sites for egg, larvae and pupae respectively.
We assume that the natural mortality rate fm of mosquito are being considered
as constant. We have considered that
0 < νn ≤ kn, 0 < νs ≤ ks and 0 < νm ≤ km, where νm defines the rate
of passage from latent class to infected class of mosquito vector.
The fractional order system of differential equations of malaria is hence proposed
as follows
ABC
a Dα

t Nh(t) = Λh − fhNh(t)− γnIn(t)− γsIs(t) (6)
ABC
a Dα

t Sn(t) = pΛh − (fh + kn)Sn(t)

ABC
a Dα

t En(t) = knSn(t)− (fh + νn)En(t)

ABC
a Dα

t In(t) = νnE(t)− (fh + γn + δn) In(t)

ABC
a Dα

t Ss(t) = (1− p)Λh + βsRs(t)− (fh + ks)Ss(t)

ABC
a Dα

t Es(t) = ksSs(t)− (fh + νs)Es(t)
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ABC
a Dα

t Is(t) = νsEs(t)− (fh + γs + δs) Is(t)

ABC
a Dα

t Rs(t) = δnIn(t) + δsIs(t)− (fh + βs)Rs(t)

ABC
a Dα

t Sm(t) = sPP (t)− (fm + km)Sm(t)

ABC
a Dα

t Em(t) = kmSm(t)− (fm + νm)Em(t)

ABC
a Dα

t Im(t) = νmEm(t) − fmIm(t)

ABC
a Dα

t A(t) = spP (t)− fmA(t)

ABC
a Dα

t E(t) = bA(t)

(
1− E(t)

KE

)
− (sE + dE)E(t)

ABC
a Dα

t L(t) = sEE(t)

(
1− L(t)

KL

)
− (sL + dL)L(t)

ABC
a Dα

t P (t) = sLL(t)

(
1− P (t)

KP

)
− (sP + dP )P (t)

where 0 < α ≤ 1 is the order of fractional derivative and we obtain integer
order model at α = 1. Every class of human population and mosquito vector
has respective initial condition.

3.1. Mathematical analysis of model. The system of mathematical model
has described the maturation cycle of mosquito vector and the dynamics of
malaria transmission by introducing two sets of classes of human population
and one set of classes of mosquito vector as defined above.
Further, according to the model, we have defined two sets of vectors as

△ = { (Ss, Es, Is, Rs, Sn, En, In, Sm, Em, Im) ∈ R10
+ :

Ss + Es + Is +Rs + Sn + En + In ≤ Λh

fh
and Sm + Em + Im ≤ spKp

fm
}

Θ = {(E,L, P,A) ∈ R4
+ : E(t) ≤ KE , L(t) ≤ KL, P (t) ≤ KP , A(t) ≤ spKp

fm
}

The above sets △ and Θ prove the dynamics of malaria transmission and matu-
ration cycle of mosquito vector is biologically well defined. The entire model is
well defined in Γ = △ × Θ ⊂ R10

+ × R4
+

3.1.1. Positivity and boundedness of Solution. In this section, we have
analysed property of positivity invariant and boundedness of the solution of
mathematical model

Lemma 3.1. [15] The set Θ is a positive invariant region in the present model.
We assume that
1. All the class functions are periodic positive functions with the common period
ω.
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2. All the parameters of the model are positive except the disease induced death
rate fh which is assumed to be non-negative.

Theorem 3.2. For initial conditions Φ ∈ R14
+ , the mathematical model has

unique solution. Further the compact space Γ is a positively invariant set which
attracts all positive orbits in R14

+

Proof. For all initial conditions Φ ∈ R14
+ , the function F is locally Lipschitz in

X(t). By using Cauchy-Lipschitz theorem [19], present mathematical model has
unique local solution.
We have

ABC
s Dα

t Nh(t) = Λh − fhNh(t)− γnIn(t)− γsIs(t) ≤ Λh − fhNh(t)

ABC
s Dα

t A(t) = spP (t)− fmA(t) ≤ spKp − fmA(t)

It leads to, if Nh(t) >
Λh

fh
and A(t) > spKp

fm
then dNh(t)

dt < 0 and dA(t)
dt < 0

By applying the standard comparison theorem, we conclude that
for all t ≥ 0, Nh(t) ≤ Λh

fh
and A(t) ≤ spKp

fm
. Both the cases proves that the set

△ and Θ are positive invariant with respect to the present mathematical model.
By lemma 3.1, the compact set Γ = △ × Θ is also invariant and the solutions
of mathematical model are non-negative and bounded. �

3.1.2. Existence and uniqueness of solution of the model. In view of
crucial role of existence and uniqueness of solution in the analysis of mathemat-
ical model of natural phenomenon, we have examined existence and uniqueness
of solution of fractional order mathematical model with exponential law by using
fixed point theory.
Now we apply fractional integral operator 2.1 to the mathematical model as in
equation 6. For further understanding, the mathematical model can be written
as

ABC
a Dα

t X(t) = F (t, X(t)) (7)
Where X(t) = (Ss(t), Es(t), Is(t), Rs(t), Sn(t), En(t), In(t), Sm(t), Em(t),
Im(t), E(t), L(t), P (t), A(t))T .
The function F : R+ × R14

+ → R14
+ is C∞(R14

+ ).

Theorem 3.3 (Existence theorem). Let H be an open connected set in R2,
assume that the equation 7 satisfies the following conditions
i. ABC

a Dα
t X(t) = F (t, X(t)) is continuous on D with initial value conditions as

given above.
ii. ABC

a Dα
t X(t) = F (t, X(t)) is Lipschitz continuous with respect to y on S with

Lipschitz constant 0 < L < 1.
∥ABC
a Dα

t Xi(t) −ABC
a Dα

t Xj(t)∥ ≤ L ∥F (t, Xi(t))− F (t, Xj(t))∥
Let (t0, Xi(t0)) ∈ D and a and b be positive constants such that

E = {(t, X(t)) : |t− t0| ≤ a, ∥X(t) − X(t0)∥ ≤ b}
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E is a subset of D. Let M = max(t,X(t)) |F (t, X(t))| and h = min
(
a, b

M

)
,

then all X(t) have unique solution in the interval |t− t0| ≤ h

Proof. Let E be a closed rectangle inside open connected set D and F (t, X(t))
defined Atangana-Baleanu differential operator, F (t, X(t)) satisfies all proper-
ties assumed in the theorem 2.4.
Let E1 be a rectangle defined as
E1 ={(t,X(t)) : |t− t0| ≤ h, ∥X(t) − X(t0)∥ ≤ b}
We can observe that if a ≤ b

M then h = a and E=E1 and if b
M ≤ a then

h = b
M and E1 ⊂ E

Let’s establish Atangana-Baleanu integral of Caputo sense as

X(t) −X(t0) =
ABC
t0 Iαt F (t, X(t)) (8)

By construction of successive approximation, the proof can be established to
show that the sequence {Xm(t)} converges to X(t) on [t0, t0 + h] and gives rise
to uniqueness and existence of solution of integral (8).
Our first task is to verify that all Xm(t) are well defined and continuously dif-
ferentiable on [t0, t0 + h].
Applying induction argument, it is to be noted that Xm(t) are well defined only
if (t,Xm−1(t)) ∈ E1 for all t ∈ [t0, t0 + h].
This holds trivially for X(t0).
Assume that, for m ≥ 1, if (t,Xm−1(t)) ∈E1 and ∥Xm−1(t) − X(t0)∥ ≤ b
holds for all t ∈ [t0, t0 + h].
The same statement is true for Xm and it is sufficient to prove induction state-
ment as E1 ⊂ E ,we have

∥Xm(t) −X(t0)∥ = ∥ABC
t0 Iαt F (t, Xm−1(t))∥

≤ ∥ F (t, Xm−1(t))∥
tα

Γ(α− 1)

≤ Mtα < b (9)

Thus F (t, X(t)) is well defined and continuous on [t0, t0 + h].
Hence the said properties holds for Xm(t) and induction is complete.
For the betterment of further calculations, we express

Ω(t,X(t)) = ABC
t0 Dα

t {X(t)}

By theorem 2.4, we are free to conclude that all the above kernel satisfy Lipschitz
conditions, demonstrated as follows for each class

∥Ω(t,X(t))− Ω(t,X1(t))∥ ≤ b∥X(t)−X1(t)∥ (10)

By definition of Atangana-Baleanu fractional order integral

X(t) −X(t0) =
(1− α)

M(α)
Ω(t, X(t)) +

α

Γ(α)M(α)

∫ t

t0

Ω(ψ, X(ψ))(t− ψ)α−1dψ
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Here, we construct the recursive formula for any positive integer m as

Xm(t) =
(1− α)

M(α)
Ω(t, Xm−1(t)) +

α

Γ(α)M(α)

∫ t

t0

Ω(ψ, Xm−1(ψ))(t− ψ)α−1dψ

We express the difference between the successive terms by using recursive formula
as mentioned above

ωm(t) = Xm(t)−Xm−1(t) =
(1− α)

M(α)
{Ω(t, Xm−1(t))− Ω(t, Xm−2(t))}

+
α

Γ(α)M(α)

∫ t

t0

{Ω(ψ, Xm−1(ψ))− Ω(ψ, Xm−2(ψ))}(t− ψ)α−1dψ

It is worth to observe the summations giving the mth terms of classes.

Xm(t) =

m∑
j=1

ωj(t)

By theorem 2.4, as all the above kernels ωm satisfy Lipschitz condition,
∴ ∥ωm(t)∥ = ∥Xm(t)−Xm−1(t)∥

≤ (1− α)

M(α)
∥Ω(t, Xm−1(t))− Ω(t, Xm−2(t))∥

+
α

Γ(α)M(α)

∫ t

t0

∥Ω(ψ, Xm−1(ψ))− Ω(ψ, Xm−2(ψ))∥

(t− ψ)α−1dψ

∴ ∥ωm(t)∥ ≤ (1− α)

M(α)
b∥Xm−1(t)−Xm−2(t)∥

+
1

Γ(α)M(α)
b∥Xm−1(t)−Xm−2(t)∥(t− t0)

α

Consequently, we can deduce that

∥ωm(t)∥ ≤ (1− α)

M(α)
b∥ωm−1(t)∥+

1

Γ(α)M(α)
b∥ωm−1(t)∥(t− t0)

α (11)

Taking all these inequality into account, we conclude that we obtain the existence
of the solution of the mathematical model. �
Theorem 3.4. The mathematical model involving Atangana-Baleanu Caputo
sense fractional order derivative 3.1.2 has a solution if there exist t0 such that

(1− α)

M(α)
b+

1

Γ(α)M(α)
b(t− t0)

α < 1

Proof. As we know that all class functions are bounded 11 and utilizing recursive
algorithm, we get

∥ωm(t)∥ ≤ ∥Xm(t0)∥
[
(1− α)

M(α)
b+

1

Γ(α)M(α)
b(t− t0)

α

]m
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Hence, the solution of mathematical model is continuous and exists.
Now, by theorem 2.4, the system of Atangana-Baleanu fractional differential
equation with initial conditions satisfies Lipschitz condition.
Let’s assume the condition such that,

X(t)− X(t0) = ωm−1(t)−Am(t)

Thus, we have

∥Am(t)∥ = ∥ (1− α)

M(α)
(Ω(t, X(t))− Ω(t, Xm−1(t))

+
α

Γ(α)M(α)

∫ t

t0

(Ω(ψ, X(ψ))− Ω(ψ, Xm−1(ψ))(t− ψ)α−1dψ∥

≤ (1− α)

Γ(α)M(α)
b∥X(t)− Xm−1(t)∥

+
1

Γ(α)M(α)
b∥X(t)−Xm−1(t)∥(t− t0)

α

By using this process recursive formula,we have

∥Am(t)∥ ≤
(
(1− α)

M(α)
+

1

Γ(α)M(α)
(t− t0)

α

)m+1

bm+1a

Then, at particular point t0

∥Am(t)∥ ≤
(
(1− α)

M(α)
+

1

Γ(α)M(α)
(t− t0)

α

)m+1

bm+1a (12)

Taking the limit of equation 12, as m tends to ∞, we get

∥Am∥ → 0

This completes the proof of existence through the convergence of the sequence
{Xm(t)}.
Now, let’s prove the uniqueness of the solution of the present mathematical
model. Let’s assume that X∗(t) be the solution of the proposed fractional order
model.

X(t) − X∗(t) =
(1− α)

M(α)
(Ω(t, X(t))− Ω(t, X∗(t)))

+
α

Γ(α)M(α)

∫ t

t0

(Ω(ψ, X(ψ))− Ω(ψ, X∗(ψ)))(t− ψ)α−1dψ

∥X(t) − X∗(t)∥ ≤ (1− α)

M(α)
∥Ω(t, X(t))− Ω(t, X∗(t))∥

+
α

Γ(α)M(α)

∫ t

t0

∥Ω(ψ, X(ψ))− Ω(ψ, X∗(ψ))∥(t− ψ)α−1dψ
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Employing the results present in 10, we get

∥X(t) − X∗
i (t)∥ ≤ (1− α)

M(α)
b∥X(t)− X∗(t)∥

+
1

Γ(α)M(α)
b∥X(t)−X∗(t)∥(t− t0)

α

∥X(t) − X∗(t)∥
(
1− (1− α)

M(α)
b− 1

Γ(α)M(α)
b(t− t0)

α

)
≤ 0 (13)

�
Theorem 3.5. The fractional order model has a unique solution if

∥X(t) − X∗(t)∥
(
1− (1− α)

M(α)
b− 1

Γ(α)M(α)
b(t− t0)

α

)
> 0 (14)

Proof. By using equation number 13

∥X(t) − X∗(t)∥
(
1− (1− α)

M(α)
b− 1

Γ(α)M(α)
b(t− t0)

α

)
≤ 0

Hence, we can conclude that
∥X(t) − X∗(t)∥ = 0

It implies the proof.
X(t) = X∗(t)

Thus, the present model has unique solution. �

4. Numerical analysis and description

In this section, we have presented and analysed the numerical solution of
the model by using generalised Euler method [GEM]. The numerical results are
significantly helpful to explore the behaviour of the system of mathematical
model and the impact of fractional order of the system consequently. In the first
assumption, we have taken suitable values of parameters along with initial values
of the classes as given in [15]. Most of the parameters and initial conditions of the
present model are fitted by keeping in mind the realistic statistics. The values
of parameter are fitted as p = 0.25; cmn = 0.021; cms = 0.012; cnm = 0.11;
csm = 0.08; ¯cmn = 0.008; Λh = 10; υn = 0.10; υs = 0.06; υm = 0.083; δs =
0.01; δn = 0.001; fh = 0.00063; fm = 0.1; KA = 3000; KL = 5000; KP =
4000; b = 2; sE = 0.6; dE = 0.3; sL = 0.4; dL = 0.3; sP = 0.25; dP =
0.15; γn = 0.000018; γs = 0.00003; βs = 0.0055; νs = 0.025 and the initial
values as E(0) = 50; L(0) = 40; P (0) = 30; A(0) = 80; Sn(0) = 600; Ss(0) =
330; In(0) = 500; En(0) = 250; Es(1) = 230; Is(1) = 190; Rs(1) = 300;
Sm(1) = 80; Em(1) = 80; Im(1) = 50.
In figure 1, we have demonstrated numerical analysis of all the classes of human
population and mosquito along with maturation stages of mosquito vector for
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integer order one (α = 1). It has been observed that the graphical results match
with the previous results which are presented in [15].
Further, figure 2 describes the dynamics of every class by varying fractional
order. In figure 2(a), the maturation stages of mosquitoes have been analysed
and it has been observed that the change in every stage of growth shows change
in behaviour upto certain period and then takes the steady state. It can be
emphasised here that the rate of growth at various stages of mosquitoes can
be formulated by fractional order instead of varying parameters as in [15]. In
natural scenario also, the rate of growth of mosquitoes reaches upto certain stage
then proceeds to saturation level. Figure 2(b) deals with dynamics of classes of
semi-immune human population for various fractional order (α) of differential
equations present in the model. The change in fractional order (α) shows the
variation in rate of susceptible class in downward direction upto certain period
which later stabilises. In latent class, the graph indicates more variation than
other classes. In this class, growth shows mixed effects with respect to changes
in fractional order (α) then proceeding to stable position.
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(c) Numerical analysis of classes of
non-immune human population
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Figure 1. Numerical analysis for mathematical model taking
values at α = 1
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Figure 2. Numerical analysis for mathematical model taking
values at α = 1.05, α = 1, α = 0.95 and α = 0.9



210 D.D. Pawar, W.D. Patil and D.K. Raut

While the growth in semi-immune infected class and semi-immune recovered
class of human population shows flat curve proceeding towards the stability. In
this class, speed of growth is more for α = 0.9 than α = 1.05. In figure 2(c),
dynamics of non-immune classes of human population and classes of mosquito
vectors have been presented in sub-plots. The rate of non-immune susceptible
class and non-immune latent class rapidly decreases and take constant position.
On the other side, number of non-immune infected human population increases
rapidly and then takes steady state. The rate of change of non-immune suscepti-
ble and latent human population is directly proportional to fractional order (i.e.
α) and that of non-immune infected human population is inversely proportional.
Lastly, the effect of change in fractional order (α)in classes of mosquito vectors
have been analysed. The rate of change of every class of mosquito vector is being
inversely proportional to the fractional order (α) of the respective class.
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Figure 3. Numerical analysis for mathematical model taking
values at α = 1
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(a) Dynamics of growth stages of mosquito vectors by varying α
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(b) Dynamics of semi-immune human population by varying α
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Figure 4. Numerical analysis for mathematical model by vary-
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In the another set, values of parameters and initial value conditions have been
fitted such that another state of dynamics of malaria transmission can be anal-
ysed through graphical simulation as given below.
The figures 3 and 4 have been plotted by fitting the set of values of parame-
ters and the initial values of various classes as p = 0.25; cmn = 0.021; cms =
0.012; cnm = 0.11; csm = 0.08; ¯cmn = 0.008; Λh = 50; υn = 0.10; υs =
0.06; υm = 0.083; δs = 0.01; δn = 0.001; fh = 0.00063; fm = 0.6; kn =
10000; KL = 5000; KP = 4000; b = 2; sE = 0.6; dE = 0.3; sL = 0.4; dL =
0.3; sP = 0.25; dP = 0.15; γn = 0.000018; γs = 0.00003; βs = 0.0055; νs =
0.25; with initial values E(0) = 50; L(0) = 40; P (0) = 30; A(0) = 80; Sn(0) =
50; Ss(0) = 200; In(0) = 50; En(0) = 25; Es(0) = 150; Is(0) = 350; Rs(0) =
400; Sm(0) = 50; Em(0) = 120; Im(0) = 100.
We have illustrated the dynamics of all the classes of human population and
mosquito vector systematically. In this case, figure 3(a) and 3(d) depicts that
all classes of mosquito vector decrease sharply and take stable position after some
period. In figure 3(b) and 3(c), the graph of infected classes in non-immune and
semi-immune classes grows gradually. As time extends, population of mosquito
decreases in all growth stages with all classes but infected human population
shows consistent growth.
In figure 4, the dynamics of all classes of human population and mosquito vec-
tors have been shown graphically with respect to variation of fractional order
(i.e. α). In figure 4(a), the graph describes growth of mosquitoes in four stages
indicating positive relation with fractional order. In all the stages, population of
mosquito vector increases rapidly and then it decreases. In figure 4(b), classes
of semi-immune human population has been explained. The rate of growth in
semi-immune susceptible, latent, infected and recovered classes are inversely pro-
portional to fractional order (i. e. α), while the rate of growth in latent class
shows the mixed proportion with fractional order. In figure 4(c), all classes of
non-immune human population increases upto certain stage and then comes to
constant state. Further the growth rate of all classes of non-immune human
population is directly proportional to the fractional order (α). In all classes of
adult mosquito vector, the rate of growth is directly proportional to fractional
order (α).

5. Conclusion

In our research, fractional order mathematical model of malaria transmis-
sion dynamics using Atangana-Baleanu operator has been analysed. In present
model, we hypothesized the effects of malaria in two groups of human popu-
lation on the basis of immunity factor of human population. Considering the
impact of mosquito vector on malaria dynamics, we have incorporated various
stages of mosquito vector along with family of classes of adult mosquitoes. It
has been observed that present model is well defined biologically. The positivity
and boundedness of the model has been studied. As Atangana-Baleanu operator
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satisfies Lipschitz condition, it has been applied successfully to check existence
and uniqueness of the solution of present model. Generalised Euler method has
been applied successfully to illustrate the dynamics of all the stages of mosquito
vectors, classes of human population and classes of mature mosquito vector for
various values of fractional order (α) using MATLAB. The present mathemat-
ical model, a transformation of integer order model on observation yields that
the present result for integer order so obtained match with the previous results
explained by Ousmane Koutou et al. [15]. This fractional order model gives
separate compartment for semi-immune and non-immune groups of populations
providing us a broad spectrum to calibrate different degree of infectivity. It also
gives us scope to default from treatment. Therefore, the authors have depicted
the variation in dynamics of malaria transmission incorporating immunity factor
in humans efficiently, which we hope would help in eradication of malaria. The
authors hence highlight the utility of fractional order mathematical model for
understanding, analysis and interpretation of dynamics of the disease.
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