• Title/Summary/Keyword: uniform grid

Search Result 207, Processing Time 0.03 seconds

Characteristic Analysis elf Large Grounding system by Using Reduced Scale Model Method (축소모델 기법을 이용한 대규모 접지계의 특성분석)

  • 장석훈;이재복;명성호;조연규;김점식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.162-167
    • /
    • 2004
  • The scale model grounding systems to study the behavior of grounding system in uniform soils have been designed and fabricated. Constructional details and instrumentation have been discussed. To verify the accuracy of the results obtained from the experimental tests, they have been compared with computer calculation results. Also, in order to assess the effectiveness of bonding two grounding systems, grounding grid conductors which were downsized as a scale factor of 100:1 were analyzed by using the scale model method. A profile of GPR(Grounding Potential Rise) of each case was measured. The scale model grounding system presented in this paper can be valuable tool to analyze the ground potential profile and ground resistance of practical grounding system.

Convergence Analysis of LU Scheme for the Euler Equations on Unstructured Meshes

  • Kim Joo Sung;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.175-177
    • /
    • 2003
  • The convergence characteristics of the LV scheme for the Euler equations have been investigated by using the Von Neumann stability analysis. The results indicated that the convergence rate is governed by a specific combination of CFD parameters. Based on this insight, it is shown that the convergence characteristics of the LV scheme is not deteriorated at any grid aspect-ratio as long as the local time step is defined based on the parameter combination. The numerical results demonstrated that this time step definition provide a uniform convergence for grid aspect-ratios between one to$1{\times}10^{4}$.

  • PDF

A Study on the Flow Characteristics of Cubic Cavity with driven Flow (구동류를 갖는 입방형 캐비티의 유동특성에 관한 연구)

  • 최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.935-941
    • /
    • 1998
  • Experiments were carried out for a cubic cavity flow. Contrinuous shear stress is supplied by driven flow for high Reynolds number and three kinds of aspect ratios. Velocity vectors are obtained by PIV and they are used as velocity components for Poisson equation for pressure, Related boundary conditions and no-slip condition at solid wall and the linear velocity extrapolation on the upper side of cavity are well examined for the present study. For calculation of pressure resolution of grid is basically $40{\times}40$ and 2-dimensional uniform mesh using MSC staggered grid is adopted. The flow field within the cavity maintains a forced-vortex formation and almost of the shear stress from the driving inflow is transformed into rotating flow energy and the size of the distorted forced-vortex increases with increment of Reynolds number

  • PDF

Three-dimensional incompressible viscous solutions based on the unsteady physical curvilinear coordinate system

  • Lee S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.43-48
    • /
    • 1998
  • The development of unsteady three-dimensional incompressible viscous solver based on unsteady physical curvilinear coordinate system is presented. A 12-point finite analytic scheme based on local uniform grid spacing is extended for nonuniform grid spacing. The formulation of a condition is suggested to avoid the oscillation of the series summations produced by the application of the method of separation of variables. SIMPLER and pressure Poisson equation techniques are used for solving a velocity-pressure coupled problem. The matrix is solved using the Generalized Minimal RESidual (GMRES) method to enhance the convergence rate of unsteady flow solver and the Kinematic boundary condition of a free surface flow. It is demonstrated that the numerical solutions of these equations are less mesh sensitive.

  • PDF

Finite Element Analysis of Electromagnetic Field Equation with Speed E.M.E (속도기전력을 갖는 전자력 방정식의 유한요소 해석)

  • Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.252-258
    • /
    • 1987
  • Time periodic finite element solutions for sinusoidally excited electromagnetic field problems in moving media are presented. Solutions by the Galerkin method contain spurious oscillations when grid Peclet number is more than one. To suppress these oscillations an upwind finite element method using two different time periodic test functions is introduced. One is multiplied to second and first-order space derivative terma and the other to the time derivative term. Test functions are obtained from trial functions by adding or subtracting quadratic bias functions with appropriate scaling factors. Phase differences are considered between trial functions and bias functions. For simple interpretations of the phase differences, complex scaling factors are used. The proposed method is developed to give nodally exact solutions for uniform grid spacing in one dimensional problems. Based on the one dimensional results, a two dimensional upwinding scheme is also derived.

  • PDF

Typhoon Simulation with GME Model (GME 모델을 이용한 태풍 모의)

  • Oh, Jai-Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.2
    • /
    • pp.9-13
    • /
    • 2007
  • Typhoon simulation based on dynamical forecasting results is demonstrated by utilizing geodesic model GME (operational global numerical weather prediction model of German Weather Service). It is based on uniform icosahedral-hexagonal grid. The GME gridpoint approach avoids the disadvantages of spectral technique as well as the pole problem in latitude-longitude grids and provides a data structure extremely well suited to high efficiency on distributed memory parallel computers. In this study we made an attempt to simulate typhoon 'NARI' that passed over the Korean Peninsula in 2007. GME has attributes of numerical weather prediction model and its high resolution can provide details on fine scale. High resolution of GME can play key role in the study of severe weather phenomenon such as typhoons. Simulation of future typhoon that is assumed to occur under the global warming situation shows that the life time of that typhoon will last for a longer time and the intensity will be extremely stronger.

Measurement of the Ground Resistance using the Fall-of-Potential Method with the Vertically-placed Current and Potential Auxiliary Electrodes (전류 및 전위 보조전극을 수직으로 배치하는 전위강하법을 이용한 접지저항의 측정)

  • Lee, Bok-Hee;Kim, Ki-Bok;Kim, You-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.53-60
    • /
    • 2012
  • The fall-of-potential method is commonly used in measuring the ground resistance of large-scaled grounding system and the current and potential auxiliary electrodes are horizontally arranged. Because the distances between the ground grid to be tested and auxiliary electrodes are limited in downtown areas, it is very difficult to measure accurately the ground resistance of large-scaled grounding system. In this paper, the fall-of-potential method of measuring the ground resistance with the vertically-placed current and potential auxiliary electrodes was examined and discussed. The validity and good accuracy of the proposed method of measuring the ground resistance were confirmed through various simulations and actual tests carried out in uniform and two-layer soil structures.

Convergence Analysis of LU scheme for the Euler equations (Euler 방정식에 대한 LU implicit scheme의 수렴성 해석)

  • Kim J.S.;Kwon O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.49-55
    • /
    • 2003
  • A comprehensive study has been made for the investigation of the convergence characteristics of the LU scheme for the Euler equations using von Neumann stability analysis. The stability results indicate that the convergence rate is governed by a specific parameter combination. Based on this insight it is shown that the LU scheme will not suffer convergence deterioration at any grid aspect ration if the local time step is defined using appropriate parameter combination. The numerical results demonstrate that this time step definition gives uniform convergence for grid aspect ratios from one to $1\times10^4$.

  • PDF

On a new fourth order self-adaptive time integration algorithm

  • Zhong, Wanxie;Zhu, Jianping
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.589-600
    • /
    • 1996
  • An explicit 4th order time integration scheme for solving the convection-diffusion equation is discussed in this paper. A system of ordinary differential equations are derived first by discretizing the spatial derivatives of the relevant PDE using the finite difference method. The integration of the ODEs is then carried out using a 4th order scheme and a self-adaptive technique based on the spatial grid spacing. For a non-uniform spatial grid, different time step sizes are used for the integration of the ODEs defined at different spatial points, which improves the computational efficiency significantly. A numerical example is also discussed in the paper to demonstrate the implementation and effectiveness of the method.

A Study on the Point-Mass Filter for Nonlinear State-Space Models (비선형 상태공간 모델을 위한 Point-Mass Filter 연구)

  • Yeongkwon Choe
    • Journal of Industrial Technology
    • /
    • v.43 no.1
    • /
    • pp.57-62
    • /
    • 2023
  • In this review, we introduce the non-parametric Bayesian filtering algorithm known as the point-mass filter (PMF) and discuss recent studies related to it. PMF realizes Bayesian filtering by placing a deterministic grid on the state space and calculating the probability density at each grid point. PMF is known for its robustness and high accuracy compared to other nonparametric Bayesian filtering algorithms due to its uniform sampling. However, a drawback of PMF is its inherently high computational complexity in the prediction phase. In this review, we aim to understand the principles of the PMF algorithm and the reasons for the high computational complexity, and summarize recent research efforts to overcome this challenge. We hope that this review contributes to encouraging the consideration of PMF applications for various systems.