• Title/Summary/Keyword: uniform grid

Search Result 207, Processing Time 0.031 seconds

An IE-FFT Algorithm to Analyze PEC Objects for MFIE Formulation

  • Seo, Seung Mo
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.6-12
    • /
    • 2019
  • An IE-FFT algorithm is implemented and applied to the electromagnetic (EM) solution of perfect electric conducting (PEC) scattering problems. The solution of the method of moments (MoM), based on the magnetic field integral equation (MFIE), is obtained for PEC objects with closed surfaces. The IE-FFT algorithm uses a uniform Cartesian grid to apply a global fast Fourier transform (FFT), which leads to significantly reduce memory requirement and speed up CPU with an iterative solver. The IE-FFT algorithm utilizes two discretizations, one for the unknown induced surface current on the planar triangular patches of 3D arbitrary geometries and the other on a uniform Cartesian grid for interpolating the free-space Green's function. The uniform interpolation of the Green's functions allows for a global FFT for far-field interaction terms, and the near-field interaction terms should be adequately corrected. A 3D block-Toeplitz structure for the Lagrangian interpolation of the Green's function is proposed. The MFIE formulation with the IE-FFT algorithm, without the help of a preconditioner, is converged in certain iterations with a generalized minimal residual (GMRES) method. The complexity of the IE-FFT is found to be approximately $O(N^{1.5})$and $O(N^{1.5}logN)$ for memory requirements and CPU time, respectively.

A Flow Analysis of Vectored Thrust Nozzle Using Incompressible Navier-Stokes Solver (비압축성 Navier-Stokes 방정식을 이용한 추력 편향 노즐 해석(원통에서 사각형으로 변환하는 내부 흐름을 중심으로))

  • Shin Dae-Yong;Yoon Yong-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.66-72
    • /
    • 1997
  • Circular-to-rectangular transition ducts are used as exhaust components of high performance fighter aircraft with vectored thrust nozzles. Three-dimensional incompressible Navier-Stokes solver is used to analyze the transition duct. Cross sections of transition duct are defined by superelliptic equation. The grid system is generated by Non-Uniform Rational B-Spline, after generating surface grid by blending the cross sections. Good agreement between the results of the computational simulation and the experimental data is observed.

  • PDF

Development of Delaunay Triangulation Algorithm Using Subdivision (분할 Delaunay 삼각화 알고리즘 개발)

  • 박시형;이성수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.248-253
    • /
    • 2002
  • Delaunay triangulation is well balanced in the sense that the triangles tend toward equiangularity. And so, Delaunay triangulation hasn't some slivers triangle. It's commonly used in various field of CAD applications, such as reverse engineering, shape reconstruction, solid modeling and volume rendering. For Example, In this paper, an improved Delaunay triangulation is proposed in 2-dimensions. The suggested algorithm subdivides a uniform grids into sub-quad grids, and so efficient where points are nonuniform distribution. To get the mate from quad-subdivision algorithm, the area where triangulation-patch will be most likely created should be searched first.

A Study on Spatial Data Integration using Graph Database: Focusing on Real Estate (그래프 데이터베이스를 활용한 공간 데이터 통합 방안 연구: 부동산 분야를 중심으로)

  • Ju-Young KIM;Seula PARK;Ki-Yun YU
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.3
    • /
    • pp.12-36
    • /
    • 2023
  • Graph databases, which store different types of data and their relationships modeled as a graph, can be effective in managing and analyzing real estate spatial data linked by complex relationships. However, they are not widely used due to the limited spatial functionalities of graph databases. In this study, we propose a uniform grid-based real estate spatial data management approach using a graph database to respond to various real estate-related spatial questions. By analyzing the real estate community to identify relevant data and utilizing national point numbers as unit grids, we construct a graph schema that linking diverse real estate data, and create a test database. After building a test database, we tested basic topological relationships and spatial functions using the Jackpine benchmark, and further conducted query tests based on various scenarios to verify the appropriateness of the proposed method. The results show that the proposed method successfully executed 25 out of 29 spatial topological relationships and spatial functions, and achieved about 97% accuracy for the 25 functions and 15 scenarios. The significance of this study lies in proposing an efficient data integration method that can respond to real estate-related spatial questions, considering the limited spatial operation capabilities of graph databases. However, there are limitations such as the creation of incorrect spatial topological relationships due to the use of grid-based indexes and inefficiency of queries due to list comparisons, which need to be improved in follow-up studies.

A Numerical Simulation based on Cell-centered Scheme for Contractive and Dilative Motion on Axisymmetric Micro-hydro machine (셀중심법에 의한 축대칭 극소 로봇의 압축팽창운동에 대한 수치적인 연구)

  • 강효길;김문찬;전호환
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.90-97
    • /
    • 2004
  • Flow mechanism of contractive and dilative motion is numerically investigated to obtain a propulsive force in highly viscous fluid. An axisymmetric code is developed with unstructured grid system based on cell-centered scheme. It is validated by comparing with the results of Stokes approximation for the problem of uniform flow past a sphere in low Reynolds number(R$_{n}$=1). The validated code is applied to the simulation of contractive and dilative periodic motion of body whose results are quantitatively compared with the two dimensional case. In order to investigate the grid dependency, two different grids are applied to the present computations. The present study provides key information for the development of an axisymmetric Micro-hydro-robot.t.

A Study on the Numerical Analysis of Electromagnetic Field using Multi-Grid Method. (다층요소강법을 이용한 전자력 수직해석에 관한 연구)

  • Koh, Chang-Sub;Choi, Kyung;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.282-288
    • /
    • 1988
  • A Multi-grid method is introduced to Finite Element Analysis of electromagnetic field problems in order to reduce the computational time. The puropse of this work is to study how to intermix discretization and solving process, thereby making the process more effective and to find the optimal factors of Multi-grid method. Several numerical experiments with linear models of uniform and nonuniform grids confirm that the proposed algorithm can reduce the computational time very effectively as compared with con ventional iterative methods. The best results are obtained with V cycle and S.O.R. with the acce leration factor of 1.3-1.4 for smoothing.

  • PDF

A NOTE ON OPTIMAL RECONSTRUCTION OF MAGNETIC RESONANCE IMAGES FROM NON-UNIFORM SAMPLES IN k-SPACE

  • Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • A goal of Magnetic Resonance Imaging is reproducing a spatial map of the effective spin density from the measured Fourier coefficients of a specimen. The imaging procedure can be done by inverse Fourier transformation or backward fast Fourier transformation if the data are sampled on a regular grid in frequency space; however, it is still a challenging question how to reconstruct an image from a finite set of Fourier data on irregular points in k-space. In this paper, we describe some mathematical and numerical properties of imaging techniques from non-uniform MR data using the pseudo-inverse or the diagonal-inverse weight matrix. This note is written as an easy guide to readers interested in the non-uniform MRI techniques and it basically follows the ideas given in the paper by Greengard-Lee-Inati [10, 11].

Development of Delaunay triangulation algorithm using quad subdivision (Quad-Subdivision을 이용한 Delaunay 삼각화 알고리즘 개발)

  • 박시형;이성수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.151-156
    • /
    • 2000
  • Delaunay triangulation is well balanced in the sense that the triangles tend toward equiangularity. And so, Delaunay triangulation hasn't some slivers triangle. It's commonly used in various field of CAD applications, such as shape reconstruction, solid modeling and volume rendering. In this paper, an improved Delaunay triangulation is proposed in 2-dimensions. The suggested algorithm subdivides a uniform grids into sub-quad grids, and so efficient where points are non-uniform distribution. To get the mate from quad-subdivision algorithm, the area where triangulation-patch will be most likely created should be searched first.

  • PDF

Analysis of Added Resistance using a Cartesian-Grid-based Computational Method (직교격자 기반 수치기법을 이용한 부가저항 해석)

  • Yang, Kyung-Kyu;Lee, Jae-Hoon;Nam, Bo-Woo;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.2
    • /
    • pp.79-87
    • /
    • 2013
  • In this paper, an Euler equation solver based on a Cartesian-grid method and non-uniform staggered grid system is applied to predict the ship motion response and added resistance in waves. Water, air, and solid domains are identified by a volume-fraction function for each phase and in each cell. For capturing the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with a weighed line interface calculation (WLIC) method. The volume fraction of solid body embedded in a Cartesian-grid system is calculated by a level-set based algorithm, and the body boundary condition is imposed by volume weighted formula. Added resistance is calculated by direct pressure integration on the ship surface. Numerical simulations for a Wigley III hull and an S175 containership in regular waves have been carried out to validate the newly developed code, and the ship motion responses and added resistances are compared with experimental data. For S175 containership, grid convergence test has been conducted to investigate the sensitivity of grid spacing on the motion responses and added resistances.