• Title/Summary/Keyword: uniform dose

Search Result 109, Processing Time 0.031 seconds

Application of the ExacTrac System in Respiratory Gated Radiotherapy for Lung Cancer Patients (폐암 환자의 호흡연동방사선치료를 위한 ExacTrac 시스템 적용)

  • Ko, Seung Young;Lee, Jung Il
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.325-332
    • /
    • 2019
  • This study analyzed the movement of tumors using 4DCT. Appropriate uniform IM were identified using TC, II and CI depending on ITV margins. DVH and NTCP were also compared in each case. Dose analysis on tumors with uniform IM showed that the optimal treatment plan for satisfying all TC, CI, II was evaluated as 2 mm in phase 20 and 3 mm in 40%. That was compared to the dose from the normal tissues of $PTV_{20}$, $PTV_{40}$. In the 20% radiation field, V5, V10, and V20 for the lungs increased 1.49, 1.26, and 0.65%, while 40% increased by 1.9, 2.41 and 1.23%. NTCP had a dose increase of 0.57 to 0.029% from 20% and 40%. There was a dose increase in the spinal cord and heart at uniform IM, but there was no significant difference. These data suggest that the ITV setting of 20%, phase for Respiratory Gated Radiotherapy using Novalis ExacTrac system can be applied with a uniform IM 2 mm and 40% with 3 mm for optimal treatment plan.

A Study on the Dose Changes Depending on the Shielding Block Type of Irradiation During Electron Beam Theraphy (전자선치료 시 조사부위 차폐물 형태에 따른 선량변화 연구)

  • Lee, Sun-Yeb;Park, Cheol-Soo;Lee, Jae-Seung;Goo, Eun-Hoe;Cho, Jae-Hwan;Kim, Eng-Chan;Moon, Soo-Ho;Kim, Jin-Soo;Park, Cheol-Woo;Dong, Kyung-Rae;Kweon, Dae-Cheol
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • The primary focus of this study was to explore the variation in dose distributions of electron beams between different types of construction structure of cut-out blocks embodied in electron cones, given that the structure is considered one of the causes of multiple scattered radiation from electrons which may affect dose distributions. For evaluation, two types of cut-out blocks, divergency and straight, manufactured for this study, were compared in terms of area of interval in distribution of dose, and flatness and symmetric state of surface being radiated. The results showed that divergency cut-out blocks reduced the lateral scattering effects on the thickness of cut-out blocks more substantially than straight ones, leading to more uniform dose distribution at baseline depth. Notably in divergency cut-out blocks, the high dose area decreased more significantly, and more uniform dose distribution was observed at the edge of the irradiated field. This points to a need to consider the characteristics of dose distribution of electron beams when setting up radiotherapy planing at the venues. Therefore, this study is significant as an exploratory work for ensuring high accuracy in dose delivery for patients.

Dose Distribution in the Brain in Radiotherapy of Whole Brain (전뇌조사시(全腦照射時) 뇌(腦)에 있어서의 선량분포(線量分布))

  • Kang, Wee Saing;Ha, Sung Whan;Park, Charn Il
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 1983
  • Whole brain irradiation is one mode in the treatment of brain cancer and brain metastasis, but it might cause brain injury such as brain necrosis. It has been studied whether the dose distribution could be a cause of brain injury. The dose distribution in whole brain irradiated by Co-60 beam has been measured by means of calibrated TLD chips inserted in the brain of Humanoid phantom. The following results were obtained. 1. Dose distribution on each transverse section of the brain was uniform. 2. On the midsagital plane of the brain, the dose was highest in upper portion and lowest in lower portion, varying 8 from 104% to 90%. 3. When the radiation field includes free space of 2cm or more width out of the head, the dose distribution in the whole brain is almost independent of the field width. 4. It is important to determine adequate shielding area and to set shielding block exactly in repetition of treatment.

  • PDF

Dose Distribution of 3-Channel Ovoid Applicator (3-Channel Vaginal Ovoids의 선량분포 특성)

  • Kim Chang Hee;Yun Sang Mo;Kim Sung Kyu;Shin Sei One
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.134-139
    • /
    • 2004
  • This study was aimed to develop a new ovoid applicator for vaginal high-dose rate intracavitary radiation therapy, evaluate uniformity of dose distribution, and assess clinical applicability. The authors evaluated dose uniformity of vaginal mucosa according to 5-different ovoid-separation using 2-channel and modified 3-channel ovoid applicator. There were no significant differences in the dose distribution along the vaginal mucosa with 2 and 2.5 cm separations, but there were between the 2-channel and 3-channel ovoid applicator with a separation of 3 cm or more. Although a low dose area was shown between two ovoid applicators with the 2-channel ovoid applicator, the dose distribution along the vaginal mucosa with the 3-channel ovoid applicator was very uniform.

  • PDF

The Effect of Dose Distribution under Treatment Techniques on Cerebrospinal Irradiation (뇌 및 척수조사시 치료기법의 변화가 선량분포에 미치는 영향)

  • Lee, Seungchul;Kim, Youngjae
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • This study tries to evaluate the usefulness CSI treatment. Compare the standard technique and simple technique, using the volume region of a high dose of Field joints (hot spot) or low dose regions (cold Spot). In patients who agreed to this study, obtain CT image using CT simulator skull to pelvis region. Standard Technique were performed on the movement of the joint radiation field range and simple technique has set a treatment plan to secure the radiation field range and analyzed treatment planning. Under analysis standard technique occurred the area of the high dose(Hot Spot) for the area overlapping the field and simple technique showing a uniform doses. CI indices of standard technique and simple technique was 1.6~3, 1.6~1.87, CN indices was 0.32~0.53, 0.46~0.51 and HI indices was 0.11~0.33, 0.2~0.26. Therefore, adjacent to part of the dose distribution junction more equally than simple technique compared to the Standard Technique. Compare the dose distribution patterns using CI, CN, HI indices, showed a uniform dose distribution in the simple technique. so, simple technique was determined appropriate treatment the CSI.

The Japan Health Physics Society Guideline on Dose Monitoring for the Lens of the Eye

  • Yokoyama, Sumi;Tsujimura, Norio;Hashimoto, Makoto;Yoshitomi, Hiroshi;Kato, Masahiro;Kurosawa, Tadahiro;Tatsuzaki, Hideo;Sekiguchi, Hiroshi;Koguchi, Yasuhiro;Ono, Koji;Akiyoshi, Masahumi;Kunugita, Naoki;Natsuhori, Masahiro;Natsume, Yoshinori;Nabatame, Kuniaki;Kawashima, Tsunenori;Takagi, Shunji;Ohno, Kazuko;Iwai, Satoshi
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Background: In Japan, new regulations that revise the dose limit for the lens of the eye (hereafter the lens), operational quantities, and measurement positions for the lens dose were enforced in April 2021. Based on the international safety standards, national guidelines, the results of the Radiation Safety Research Promotion Fund of the Nuclear Regulation Authority, and other studies, the Working Group of Radiation Protection Standardization Committee, the Japan Health Physics Society (JHPS) developed a guideline for radiation dose monitoring for the lens. Materials and Methods: The Working Group of the JHPS discussed the criteria of non-uniform exposure and the management criteria set not to exceed the dose limit for the lens. Results and Discussion: In July 2020, the JHPS guideline was published. The guideline consists of three parts: main text, explanations, and 26 examples. In the questions, the corresponding answers were prepared, and specific examples were provided to enable similar cases to be addressed. Conclusion: With the development of the guideline on radiation dose monitoring of the lens, radiation managers and workers will be able to smoothly comply with revised regulations and optimize radiation protection.

Dose Distribution of Total Body Irradiation for Bone Marrow Transplantation in Leukemia (백혈병에서 골수이식을 위한 전신방사선조사시 선량분포 특성)

  • 김성규;김명세;신세원
    • Progress in Medical Physics
    • /
    • v.7 no.2
    • /
    • pp.47-55
    • /
    • 1996
  • Total Body Irradiation(TBI) is one of the essential treatment modalities in bone marrow transplantation for leukemia and lymphoma. Various techniques and dose regimens were introduced with sevelal advantages and disadvantages. In TBI, lung block could reduce lung dose to 75% of original beam for decreasing lung dose with homogenous total body irradiation. Accurate provision for specified dose and the desired homogeneity are essential before clinical total body irradiation. When performed in total body irradiation, the problem obtain uniform dose distribution in brain, neck, lung, umbilicus, pelvis and leg. Authors compared to dose distribution with method 1 and method 2. The method 1 used compensating filters for homogeneous dose distribution(Minesota University Method). The method 2 used fixing frame made in aeryl developing authors. Results were following. 1. Method 1 was showed dose distribution from 95.6% to 100%, method 2 showed dose distribution from 95.4% to 100%. 2. Method 2 was showed different to 3.4% at skin region and midline in the brain. In the neck, showed different to 1.5%. In the umbilicus. showed different to 2.3%.

  • PDF

Evaluation of the Dose According to the Movement of Breath During Field-in-Field Technique Treatment of Breast Cancer Patients (유방암 환자의 Field-in-Field Technique 치료 시 호흡의 움직임에 따른 선량 평가)

  • Kwon, Kyung-Tae
    • Journal of radiological science and technology
    • /
    • v.41 no.6
    • /
    • pp.561-566
    • /
    • 2018
  • Field-in-Field Technique is applied to the radiation therapy of breast cancer patients, and it is possible to compensate the difference in breast thickness and deliver uniform dose in the breast. However, there are several fields in the treatment field that result in a more complex dose delivery than a single field dose delivery. If the patient's respiration is irregular during the delivery of the dose by several fields and the change of respiration occurs, the dose distribution in the breast changes. Therefore, based on the computed tomography images of breast cancer patients, a human model was created by using a 3D printer (Builder Extreme 1000) to describe the volume in the same manner. A computerized tomography (CT) of the human body model was performed and a treatment plan of 260 cGy / fx was established using a 6-MV field-in-field technique using a computerized treatment planning system (Eclipse 13.6, Varian, USA). The distribution of the dose in the breast according to the change of the respiration was measured using a moving phantom at 0.1 cm, 0.3 cm, 0.5 cm amplitude, using a MOSOXIDE Silicon Field Effect Transistor (MOSFET, Best Medical, Canada) Were measured and compared. The distribution of dose in the breast according to the change of respiration showed similar value within ${\pm}2%$ in the movement up to 0.3 cm compared to the treatment plan. In this experiment, we found that the dose distribution in the breast due to the change of respiration when the change of respiration was increased was not much different from the treatment plan.

A comparative study of dose distribution for whole brain with field-in-field technique (전뇌(Whole Brain)치료 시 Field-in-Field Technique 적용에 관한 고찰)

  • Kim Bo Kyoum;Lee Je Hee;Jung Chi Hoon;Pack Heung Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • Purpose : Uniform dose distribution of the target volume is very important in the radiation treatment. We will evaluate the usefulness of Field-in-Field Technique use to get uniform dose distribution of the target volume and try to find Apply possibility out to a whole brain treatment patient of various thickness. Material and method : We compare the dose distribution when we applied Field-in-Field Technique and parallel opposed fields technique. establish the treatment plan to a phantom(acryl 16cm spheral phantom) and do the measurement, assessment use the TLD and Low sensitivity film. Also the assessment did Apply possibility of Field-in-Field Technique to 20 patient object of various thickness. Result : In the case to use the parallel opposed fields at the whole brain treatment $10-12\%$ high dose region appeared but reduce to $3-4\%$ lesses when we used the Field-in-Field technique. We could get similar numerical value the film and TLD measurement result also. The change of the dose distribution appeared to its ${\pm}1{\sim}2\%$ although it applied such Field-in-Field technique to various patient so that we were identical. Conclusion : We can get uniform dose distribution of in the treatment region if we apply the Field-in-Field technique at the whole brain treatment. Also alternate can play the role of the wedge filter and 3D compensator and We are thought by minimizing the obstacle to be happened due to the high dose region when radiation treatment.

  • PDF

Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields (Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • Purpose : To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated Materials and Method : The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of target-skin distance (TSD) and full collimator size (35*35 $cm^2$ on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cm * 105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. Results : The full width at half maximum(FWHM) of dose profile was 130 cm in large field of 105*105 $cm^2$ The width of $100\pm10\%$ of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose unifomity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80$\%$ depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. Conclusion : The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within$\pm10\%$ difference except the protruding area of skin which needs a shield and deeply curvatured region of skin which needs boosting dose.

  • PDF