Browse > Article
http://dx.doi.org/10.7742/jksr.2019.13.3.325

Application of the ExacTrac System in Respiratory Gated Radiotherapy for Lung Cancer Patients  

Ko, Seung Young (Department of Medical Physics, Kyonggi University)
Lee, Jung Il (Department of Radiation Oncology, CHA University School of Medicine)
Publication Information
Journal of the Korean Society of Radiology / v.13, no.3, 2019 , pp. 325-332 More about this Journal
Abstract
This study analyzed the movement of tumors using 4DCT. Appropriate uniform IM were identified using TC, II and CI depending on ITV margins. DVH and NTCP were also compared in each case. Dose analysis on tumors with uniform IM showed that the optimal treatment plan for satisfying all TC, CI, II was evaluated as 2 mm in phase 20 and 3 mm in 40%. That was compared to the dose from the normal tissues of $PTV_{20}$, $PTV_{40}$. In the 20% radiation field, V5, V10, and V20 for the lungs increased 1.49, 1.26, and 0.65%, while 40% increased by 1.9, 2.41 and 1.23%. NTCP had a dose increase of 0.57 to 0.029% from 20% and 40%. There was a dose increase in the spinal cord and heart at uniform IM, but there was no significant difference. These data suggest that the ITV setting of 20%, phase for Respiratory Gated Radiotherapy using Novalis ExacTrac system can be applied with a uniform IM 2 mm and 40% with 3 mm for optimal treatment plan.
Keywords
Respiration gated radiotherapy; Internal margin; ExacTrac system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. P. Hogle, "The state of the art in radiation therapy," Seminars Oncolohy Nursing, Vol. 22, No. 4, pp. 212-220, 2006.   DOI
2 C. G. Willett, R. M. Linggood, M. A. Stracher, M. Goiten, K. Doppke, D. C. Kushner, T. Morris, J. Pardy, R. Carroll, "The effect of respiratory cycle on mediastinal and lung dimensions in Hodgkin's disease," Cancer, Vol. 60, No. 6, pp. 1232-1237, 1987.   DOI
3 G. S. Mageras, A. Pevsner, E. D. Yorke, K. E. Rosenzweig, E. C. Ford, A. Hertanto, S. M. Larson, D. M. Lovelock, Y. E. Erdi, S. A. Nehmeh, J. L. Humm, C. C. Ling, "Measurement of lung tumor motion using respiration-correlated CT," International journal of radiation oncology, biology, physics, Vol. 60, No. 3, pp. 933-941, 2004.   DOI
4 P. J. Keall, G. S. Mageras, J. M. Balter, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. B. Van Herk, S. S. Vedam, J. W. Wong, E. Yorke, "The management of respiratory motion in radiation oncology report of AAPM Task Group 76," Medical physics, Vol. 33, No. 10, pp. 3874-3900, 2006.   DOI
5 J. M. Balter, R. K. Ten Haken, T. S. Lawrence, K. L. Lam, J. M. Robertson, "Uncertainties in CT-based radiation therapy treatment planning associated with patient breathing," International journal of radiation oncology, biology, physics, Vol. 36, No. 1, pp. 167-174, 1996.
6 S. S. Burnett, K. E. Sixel, P. C. Cheung, J. D. Hoisak, "A study of tumor motion management in the conformal radiotherapy of lung cancer," Radiotherapy and oncology, Vol. 86, No. 1, pp. 77-85, 2008.   DOI
7 V. A. Semenenko, A. Li. X, "Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data," Physics in medicine and biology, Vol. 53, No. 3, pp. 737-755, 2008.   DOI
8 Y. C. Ahn, S. Shimizu, H. Shirato, T. Hasgimoto, Y. Osaka, X. Q. Zhang, T. Abe, K. Miyasaka, "Application of real-time tumor-tracking and gated radiotherapy system for unresectable pancreatic cancer," Yonsei medical journal, Vol. 45, No. 4, pp. 584-590, 2004.   DOI
9 S. Shimizu, H. Shirato, S. Ogura, H. Akita-Dosaka, K. Kitamura, T. Nishioka, K. Kagei, M. Nishimura, K. Miyasaka "Detdction of lung tumor movement in real-time tumor-tracking radiotherapy," International journal of radiation oncology, biology, physics, Vol. 51, No. 2, pp. 304-310, 2001.   DOI
10 S. H. Benedict, K. M. Yenice, D. Followill, J. M. Galvin, W. Hinson, B. Kavanagh, P. Keall, M. Lovelock, S. Meeks, L. Papiez, T. Purpie, R. Sadagopan, M. C. Schell, B. Salter, D. J. Schlesinger, A. S. Shiu, T. Solberg, D. Y. Song, V. Stiever, R. Timmerman, W. A. Tome, D. Verellen, L. Wang, F. F. Yin, "Stereotactic body radiation therapy: the report of AAPM Task Group 101," Medical physics, Vol. 37, No. 8, pp. 4078-101, 2010.   DOI
11 R. Yaparpalvi, K. M. Garg, J. Shen, W. R. Bodner, D. K. Mynampati, A. Gafar, H. C. Kuo, A. K. Basavatia, N. Ohri, L. X. Hong, S. Kalnicki, W. A. Tome, "Evaluating which plan quality metrics are appropriate for use in lung SBRT," The British journal of radiology, Vol. 91, No. 1083, pp. 20170393, 2018.
12 R. B. Barriger, J. A. Forquer, J. G. Brabham, D. L. Andolino, R. H. Shapiro, M. A. Henderson, P. A. Johnstone, A. J. Fakiris, "A dose-volume analysis of radiation pneumonitis in non-small cell lung cancer patients treated with stereotactic body radiation therapy," International journal of radiation oncology, biology, physics, Vol. 82, No. 1, pp. 457-62, 2012.   DOI
13 X. Liang, J. Penagaricano, D. Zheng, S. Morrill, X. Zhang, P. Corry, R. J. Griffin, E. Y. Han, M. Hardde, V. Ratanatharathom, "Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans," Radiotherapy oncology, Vol. 11, pp. 10, 2016.
14 R. W. Underberg, F. J. Lagerwaard, B. J. Slotman, J. P. Cuijpers, S. Senan, "Benefit of respiration-gated stereotactic radiotherpy for stage I Lung cancer: an analysis of 4DCT datasets," International journal of radiation oncology, biology, physics, Vol. 62, No. 2, pp. 554-560, 2005.   DOI
15 F. Tommasino, A. Nahum, L. Cella, "Incresing the power of tumour control and normal tissue complication probability modelling in radiotherapy: recent trends and current issues," Translational Cancer Research, Vol. 6, No. S5, pp. S807-S821, 2017.   DOI