• Title/Summary/Keyword: unicycle robot

Search Result 19, Processing Time 0.035 seconds

The Posture Control of One-wheel Unicyle Robot Using Partial Feedback Linearization (부분 피드백 선형화를 이용한 One-wheel Unicycle Robot의 자세 제어)

  • Kim, Jin-Seok;Cho, Young-Jin;Kim, Young-Tark
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.68-75
    • /
    • 2007
  • In this study, the ultimate goal is to acquire stability when turning around efficiently by using the controller which is applied partial feedback linearization of One-wheel Unicycle Robot. When moving around, linear controller could result in unstable factor according to widening operation range. So in order to reduce instability, 1 have developed Non-linear Controller using Partial Feedback Linearization. Compared with linear controller, Non-linear Controller guarantees the superiority of Regulating Control and Tracking Control in direct and also revolution motion of Robot. I'm sure of the Non-linear controller performance through many experiments.

Nonlinear control of unicycle-type mobile robot (Unicycle-type 이동로봇의 비선형 제어)

  • 김용진;문인혁
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.131-134
    • /
    • 2001
  • This paper proposes a stable control rule for nonlinear unicycle-type mobile robot. The control method uses a local error coordinate system, velocity and distance constants $\kappa$$\_$x/, $\kappa$$\_$y/, and he. Stability of control rule is proved Liapunov function. System input to the mobile robot is reference posture ($\chi$$\_$r/, y$\_$r/, $\theta$$\_$r/)/sup/ $\tau$/ and reference e velocity (ν$\_$r/,$\omega$$\_$r/)$\^$$\tau$/. System output of the mobi-le robot is velocity of driving wheels. We introduce limit velocity for preventing high initial speed. From simulation results, we can see the proposed control rule is stable.

  • PDF

A Study on Robust Control of Mobile Robot with Single wheel Driving Robot for Process Automation (공정 자동화를 위한 싱글 휠 드라이빙 모바일 로봇의 견실제어에 관한 연구)

  • Shin, Haeng-Bong;Cha, BO-Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2016
  • This paper presents a new approach to control of stable motion of single wheel driving robot system of a pitch that is controlled by an in-wheel motor and a roll that is controlled by a reaction wheel. This robot doesn'thave any actuator for a yaw axis control, which makes the derivation of the dynamics relatively simple. The Lagrange equations was applied to derive the dynamic equations of the one wheel driving robot to implement the dynamic speed control of the mobile robot. To achieve the real time speed control of the unicycle robot, the sliding mode control and optical regulator are utilized to prove the reliability while maintaining the desired speed tracking performance. In the roll controller, the sigmoid-function based robust controller has been adopted to reduce the vibration by the situation function. The optimal controller has been implemented for the pitch control to drive the unicycle robot to follow the desired velocity trajectory in real time using the state variables of pitch angle, angular velocity, angle and angular velocity of the driving wheel. The control performance of the control systems from a single dynamic model has been illustrated by the real experiments.

Formation Algorithm with Local Minimum Escape for Unicycle Robots (유니사이클 로봇을 위한 지역최소점 탈출을 갖춘 포메이션 알고리즘)

  • Jung, Hahmin;Kim, Dong Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.349-356
    • /
    • 2013
  • This paper presents formation control based on potential functions for unicycle robots. The unicycle robots move to formation position which is made from a reference point and neighboring robots. In the framework, a local minimum case occurred by combination of potential repulsed from neighboring robots and potential attracted from a formation line is presented, in which the robot escapes from a local minimum using a virtual escape point after recognizing trapped situation. As well, in the paper, potential functions are designed to keep the same distance between neighboring robots on a formation line, i.e. the relative distance between neighboring robots on a formation line is controlled by a potential function parameter. The simulation results show that the proposed approach can effectively construct straight line, V, and polygon formation for multiple robots.

LOS-based Local Path Planning for Self organization of Unicycle Swarm Robots (유니사이클 스웜 로봇의 자기조직화를 위한 LOS 기반의 국소 경로 계획)

  • Jung, Hah-Min;Kim, Dong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1881_1882
    • /
    • 2009
  • Simple quadratic potential functions for unicycle robot path planning are presented, where proposed algorithm for path planning has the different environment for each robot based on LOS(Line Of Sight) between a target and an obstacle, unlike a conventional path planning. In doing so, the proposed algorithm assumes that each swarm robot equips its own vision instead of a ceiling camera. In particular, this paper presents that each robot follows its different local leader. As a result proposed algorithm reduces local minimum problems by the help of each local leader.

  • PDF

Rotation control for the Yaw-direction of Unicycle Robot (외바퀴 로봇의 Yaw 방향 회전 제어)

  • Hwang, Jong-Myung;Bae, Dong-Suck;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.4
    • /
    • pp.331-337
    • /
    • 2008
  • The field of robots is being widely accepted as a new technology today. Many robots are produced continuously to impart amusement to people. Especially the robot which operates with a wheelbarrow was enough of a work of art to arouse excitement in the audiences. All the wheelbarrow robots share the same technology in that the direction of roll and pitch are acting as balance controllers, allowing the robots to maintain balance for a long period by continuously moving forward and backward. However one disadvantage of this technology is that they cannot avoid obstacles in their way. Therefore movement in sideways is a necessity. For the control of rotation of yawing direction, the angle and direction of rotation are adjusted according to the velocity and torque of rotation of a motor. Therefore this study aimed to inquire into controlling yawing direction, which is responsible for rotation of a robot. This was followed by creating a simulation of a wheelbarrow robot and equipping the robot with a yawing direction controlling device in the center of the body so as to allow sideway movements.

  • PDF

Local motion planner for nonholonomic mobile robots

  • Hong, Sun-Gi;Choi, Changkyu;Shin, Jin-Ho;Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.530-533
    • /
    • 1995
  • This paper deals with the problem of motion planning for a unicycle-like robot. We present a simple local planner for unicycle model, based on an approximation of the desired configuration generated by local holonomic planner that ignores motion constraints. To guarantee a collision avoidance, we propose an inequality constraint, based on the motion analysis with the constant control input and time interval. Consequently, we formulate our problem as the constrained optimization problem and a feedback scheme based on local sensor information is established by simply solving this problem. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

Adaptive Control of a Nonholonomic Mobile Robot with Parametric Uncertainty (불확실한 파라미터를 갖는 비홀로노믹 이동로봇의 적응제어)

  • Baik, Jong-Ik;Yun, Tae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.15-18
    • /
    • 2003
  • This paper presents an adaptive control scheme for parking or regulating a nonholonomic mobile robot of an unicycle type with parameter uncertainty. The kinematics can be described with Brockett's nonholonomic integrator. The control law is designed in cylindrical coordinates together with the estimation law for the uncertain parameters such that the controlled signals converge to zero while guaranteeing the boundedness of the estimation errors. The effectiveness of the proposed scheme is demonstrated using simulations.

  • PDF

Self-Organization of Swarm Robots Based on Color Recognition (컬러 인식에 기반을 둔 스웜 로봇의 자기 조직화 연구)

  • Jung, Hah-Min;Hwang, Young-Gi;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.413-421
    • /
    • 2010
  • In the study, self-organization by color detection is proposed to overcome required constraints for existing self-organization by an external ceiling camera and communication. In the proposed self-organization, each swarm robot can follow its colleague robot and all swarm robots can follow a target by LOS(Line of Sight). The swarm robots follow the moving target by the proposed potential field, avoiding confliction with neighboring robots and obstacles. Finally, all swarm robots are reached by a sight among swarm robots. In this paper, for unicycle robots with non-holonomic constraints instead of point robot with holonomic constraints self-organization is presented, it enhances the possibility of H/W realization.