• 제목/요약/키워드: uniaxial anisotropy

검색결과 127건 처리시간 0.027초

암석의 종류와 방향에 따른 물리적 특성과 상호관계 (Characteristics of Physical Properties of Rocks and Their Mutual Relations)

  • 원연호;강추원;김종인;박현식
    • 터널과지하공간
    • /
    • 제14권4호
    • /
    • pp.261-268
    • /
    • 2004
  • The main objectives of this study are to investigate the anisotropic characteristics of rocks and to evaluate the relationships between physical properties. A series of experiments were performed in three mutually perpendicular directions for three rock types, which are granite, granitic gneiss and limestone. The relationships of measured physical properties were evaluated. The results of ultrasonic wave velocity measurement show that granite of three rock types gives the largest directional difference, and that the wave velocity in a plane parallel to a transversely isotropic one is dominantly faster than that in a subvertical or vertical plane. It implies that ultrasonic wave velocity for rock could be used as a useful tool for estimating the degree of anisotropy. The ratio of uniaxial compressive strength to Brazilian tensile strength ranges approximately from 13 to 16 for granite. from 8 to 9 for granite gneiss, and from 9 to 18 for limestone. The directional differences for granite and granitic gneiss are very small, and on the other hand, is relatively large for limestone. It is suggested that strength of rock makes quite difference depending on the rock types and loading directions, especially for the anisotropic rocks such as transversely isotropic or orthotropic rocks. The ratio of uniaxial compressive strength to point load strength index ranges from 18 to 20 for granite, from 17 to 19 for granitic gneiss, and from 21 to 24 for limestone. These results show that point load strength index makes also a difference depending on rock types and directions. Therefore. it should be noted that the ratio of uniaxial compressive strength to point load strength index could be applied to all rock types. Uniaxial compressive strength shows relatively good relationship with point load strength index, Schmidt hammer rebound value, and tensile strength. In particulat, point load strength index is shown to be the best comparative relationship. It is indicated that point load test is the most useful tool to estimate an uniaxial compressive strength indirectly.

합성형 반강자성 결합 재료의 자기장 세기에 따른 토오크 신호 분석 (Magnetic Field Dependence of Torque Signals in Synthetic Antiferromagnetic Coupled CoFeB/Ru/CoFeB Thin Film)

  • 윤석수;전우상;김동영
    • 한국자기학회지
    • /
    • 제21권3호
    • /
    • pp.83-87
    • /
    • 2011
  • 본 연구에서는 합성형 반강자성 결합 특성을 갖는 CoFeB/Ru/CoFeB 박막 재료에서 자화용이축에서 측정한 플롭자기장($H_F$)과자화곤란축에서 측정한 포화자기장(Hs)을 경계로 달라지는 토오크 신호를 분석하였다. HF의 자기장 세기에서 음의 일축이방성 특성이 최소가 되며, 이는 반강자성 결합에 의한 자화 상쇄 효과로 강자성층의 자화용이축이 곤란축과 같은 역할을 하기 때문이다. $H_F$ < H < $H_s$의 자기장의 세기에서는 두 강자성층이 형성한 자화방향의 사이각이 증가하면서 쌍축이방성 특성을 유도시킨다. 이러한 쌍축이방성 유도 특성은 두 강자성층의 자화가 서로 수직이 되는 자기장의 세기에서 최대가 된다. 한편 자기장의 세기가 $H_s$ 이상에서는 CoFeB의 고유한 일축이방성 특성을 보인다. 이러한 자기이방성 특성은 두 강자성층의 반강자성 결합에 의한 자화 특성을 반영하고 있음을 Stoner-Wohlfarth 모델 분석을 통하여 알 수 있다.

속도의존성 결정소성 모델 기반의 유한요소해석을 통한 BCC 금속의 변형 집합조직 예측 (Prediction of Deformation Texture in BCC Metals based on Rate-dependent Crystal Plasticity Finite Element Analysis)

  • 김동규;김재민;박원웅;임용택;이용신
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.231-237
    • /
    • 2014
  • In the current study, a rate-dependent crystal plasticity finite element method (CPFEM) was used to simulate flow stress behavior and texture evolution of a body-centered cubic (BCC) crystalline material during plastic deformation at room temperature. To account for crystallographic slip and rotation, a rate-dependent crystal constitutive law with a hardening model was incorporated into an in-house finite element program, CAMPform3D. Microstructural heterogeneity and anisotropy were handled by assigning a crystallographic orientation to each integration point of the element and determining the stiffness matrix of the individual crystal. Uniaxial tensile tests of single crystals with different crystallographic orientations were simulated to determine the material parameters in the hardening model. The texture evolution during four different deformation modes - uniaxial tension, uniaxial compression, channel die compression, and simple shear deformation - was investigated based on the comparison with experimental data available in the literature.

Estimation of rock tensile and compressive moduli with Brazilian disc test

  • Wei, Jiong;Niu, Leilei;Song, Jae-Joon;Xie, Linmao
    • Geomechanics and Engineering
    • /
    • 제19권4호
    • /
    • pp.353-360
    • /
    • 2019
  • The elastic modulus is an important parameter to characterize the property of rock. It is common knowledge that the strengths of rocks are significantly different under tension and compression. However, little attention has been paid to the bi-modularity of rock. To validate whether the rock elastic moduli in tension and compression are the same, Brazilian disc, direct tension and compression tests were conducted. A horizontal laser displacement meter and a pair of vertical and transverse strain gauges were applied. Four types of materials were tested, including three types of rock materials and one type of steel material. A comprehensive comparison of the elastic moduli based on different experimental results was presented, and a tension-compression anisotropy model was proposed to explain the experimental results. The results from this study indicate that the rock elastic modulus is different under tension and compression. The ratio of the rock elastic moduli under compression and tension ranges from 2 to 4. The rock tensile moduli from the strain data and displacement data are approximate. The elastic moduli from the Brazilian disc test are consistent with those from the uniaxial tension and compression tests. The Brazilian disc test is a convenient method for estimating the tensile and compressive moduli of rock materials.

Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores

  • Eom, Jung-Hye;Kim, Young-Wook;Lee, Seung-Seok;Jeong, Doo-Hoa
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.347-351
    • /
    • 2012
  • Vermiculite-silica composites with a layered structure were fabricated by adding cellulose fibers as a pore former and by a simple uniaxial pressing and subsequent sintering process. Three different combinations of additives were used and their effects on the compressive strength and thermal conductivity of the composites were investigated. Both compressive strengths (42-128 MPa) and thermal conductivities (0.75-1.48 $W/m{\cdot}K$) in the direction perpendicular to the pressing direction (T) were higher than those (19-81 MPa and 0.32-1.04 $W/m{\cdot}K$) in the direction parallel to the pressing direction (S) in all samples. The anisotropy in both properties was attributed to the microstructural anisotropy, which was caused by the layered structure developed in the composites.

전단변형에 의한 직교이방성의 변화 (Evolution of Orthotropic Anisotropy by Simple Shear Deformation)

  • 김권희
    • 대한기계학회논문집
    • /
    • 제15권2호
    • /
    • pp.413-423
    • /
    • 1991
  • Multiaxial loading by combinations of tension-torsion-internal pressure have been applied to the thins-walled tubular specimens prepared from cold drawn tubes of SAE 1020 steel. Prior to the multiaxial loading, each specimen has been twisted to different shear strains. Uniaxial tensile yield stresses measured at different angles to the tube axis clearly show that the initial orthotropic symmetry is maintained during twisting. The orthotropy axes are observed to rotate with shear strains. The plane stress yield locus measured for each twisted specimens show that yield surface shape does not remain similar during twisting and thus anisotropic work hardening is not a function of only plastic work.

FCC 다결정재의 집합조직 발전에 따른 이방성의 변화 (Anisotropy due to Texture Development in FCC Polycrystals)

  • 김응주;이용신
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1516-1523
    • /
    • 1996
  • The present study is concerned with the development of anisotropy and deformation texture in polycrystals. The individual grain in an aggregate is assumed to experience the viscoplastic dedformation with crystallographic slip that unsure uniquenessof the active slip systems and shearing rate onthese systems. Two different methods for updating the grain orientation are examined. Texture development for some deformation modes such as plane strain compression, uniaxial tension and simple shear are found. Changes in anisotropic flow potential due to texture development during large deformation are also given. Anisotropic behavior of polycrystals with defferent textures are examined.

Magnetic Properties and Magnetoimpedance Effect in Mumetal Thin Films

  • Cho, Wan-Shik;Yoon, Tae-Sick;Lee, Heebok;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • 제6권1호
    • /
    • pp.9-12
    • /
    • 2001
  • The dependence of the magnetoimpedance effect (MI) on magnetic properties has been investigated in mumetal thin films prepared by rf magnetron sputtering. Coercivity of thin films prepared at 400 W was about 0.4 Oe, and the magnetic anisotropy field of films deposited under a uniaxial magnetic field decreased with increasing film thickness. The saturation magnetization of mumetal films increased with rising input power and thickness and was smaller than that of permalloy films. Transverse incremental Permeability (TPR) of films of 1$\mu m$ thick increased with increasing effective permeability. The magneto impedance ratio (MIR) was proportional to TPR in films 1$\mu m$ thick but in spite of lower effective permeability at higher thicknesses, MIR increased due to skin effect. The height of the double peaks in the MIR curves decreased with decreasing anisotropy and thickness. The maximum MIR value for a 4$\mu m$ thick 75% at 36.5 MHz.

  • PDF

변형률속도에 따른 고강도 강판의 이방성 변화에 관한 연구 (Effect of Strain Rate on the Anisotropic Deformation Behavior of Advanced High Strength Steel Sheets)

  • 허지향;허훈;이창수
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.595-600
    • /
    • 2011
  • This paper investigates the effect of strain rate on the anisotropic deformation behavior of advanced high strength steel sheets. Uniaxial tensile tests were carried out on TRIP590 and DP780 steel sheets at strain rates ranging from 0.001/sec to 100/sec to determine yield stresses and r-values at various loading angles from the reference rolling direction. R-values were determined by the digital image correlation technique. Hill48 and Yld2000-2d yield functions were tested for their capability to describe the plastic deformation anisotropy of the materials. Initial yield loci were constructed using the Yld2000-2d yield function, which adequately described the anisotropic behavior of the materials. The shape of the initial yield loci was found to change with different strain rate, and the anisotropic behavior decreased with increasing strain rate.

제주도 현무암의 강도이방성에 대한 실험적 연구 (Experimental study on strength anisotrophy of basalt in Cheju usland)

  • 송영석;남정만;윤중만
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.1057-1062
    • /
    • 2008
  • In order to investigate a strength anisotrophy of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area, and a series of uniaxial compressive strength test and Brazilian test were carried out. The strengths were decreased with increasing the moisture contents in rock sample by pore water. As the result of test considering the anisotropy of rock strength, the compressive strength in condition of failure occurred parallel to stratified layer is decreased about 12-26% more than that in condition of failure occurred inclined to stratified layer.

  • PDF