• Title/Summary/Keyword: underwater work

Search Result 187, Processing Time 0.027 seconds

A Study on the effect of the multi-pass SMAW welding on the characteristic of the underwater welding areas (SMAW 수중 다층용접시 용접부 특성에 관한 연구)

  • 최기용;이상율;이보영;이병훈;이상용;박성두
    • Journal of Welding and Joining
    • /
    • v.16 no.4
    • /
    • pp.55-62
    • /
    • 1998
  • While excellent joint quality has been obtained using dry chamber underwater welding methods, the size limitations imposed by this process restrict its use for underwater construction work. The wet underwater shielded metal-arc welding eliminates this restriction but suffers from poor weld properties by the 1-pass bead-on-plate welding due to the excessive diffusible hydrogen. On the other hand, in the wet underwater welding, it is well known that the quantity of diffusible hydrogen in multi-pass welded parts reduce to less than that in 1-pass welded parts. Therefore, in this paper, welding experiments are made the 3-pass bead-on-plate welds by using TMCP and normalized steel plates and E4301 and cellulose coated electrode. After that, The amounts of the hydrogen absorbed into the 3-pass welded area were measured according to the JIS Z 3118 specification. The microstructural changes as well as the microhardness distribution after the underwater 3-pass welding were also investigated using Vickers microhardness tester and S.E.M and O.M. The results indicated that the quantity of diffusible hydrogen in 3-pass welded areas was reduced little less than a half of one of that in 1-pass welded areas at the specific welding condition. As a result, the cold cracking of 3-pass welded areas decreased by reduced effect of diffusible hydrogen. In the underwater 3-pass welding, the micrography of cold cracking fracture surface showed mainly the cleavage of hydrogen embrittlement.

  • PDF

Tensile Bond Characteristics between Underwater Coating Materials and Concrete Substrate (수중코팅제와 콘크리트 모재 간의 인장 부착 특성)

  • Kim, Min Ook;Jeong, Yeonung;Kang, Sung-Hoon;Moon, Juhyuk;Yi, Jin-Hak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.298-305
    • /
    • 2018
  • In this study, we investigated the tensile bond characteristics of underwater coating materials, in order to obtain useful information in support of repair work for marine and coastal concrete structures. Test variables included type of underwater coating, surface conditions of the concrete substrate, and environmental conditions. Pull-off tensile bond strength was measured at 24 h after applying underwater coatings to concrete substrates, in compliance with the procedures specified in ASTM C1583. Failure modes (coating, interface, and parent concrete) for each coating were identified through visual inspection, and comparisons were made based on measured bond strength. The tensile bond strength decreased underwater compared to that under dry conditions, while no significant effect of surface roughness on the measured bond strength was observed in underwater tests. Key aspects that need to be considered regarding selection and use of underwater coating materials for marine and coastal concrete structures were discussed.

Development of Underwater Warfare Models on the Naval Weapon Systems (해군무기체계 수중교전 모델 라이브러리 개발)

  • Han, Seungjin;Lee, Minkyu
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2013
  • ADD (Agency for Defense Development) has developed the naval warfare simulation environment (QUEST), this paper describes the model library of naval weapon systems for the application of underwater warfare simulation included in the QUEST. Models are basically developed in order to measure the effectiveness and tactical development of underwater engagement between ships and weapons. Analyzing the mission space of underwater engagement and the functionality of the legacy models, we define standards of the model structure and developed the model components. Each components are the well-defined environment, system, subsystem, algorithm models, and the interfaces are defined between them. Users can construct a model in an efficient way to various warfare scenarios using the re-usable model components and co-work with the common model library.

Design and Development of Underwater Drone for Fish Farm Growth Environment Management (양식장 생육 환경관리를 위한 수중 드론 설계 및 개발)

  • Yoo, Seung-Hyeok;Ju, Yeong-Tae;Kim, Jong-Sil;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.5
    • /
    • pp.959-966
    • /
    • 2020
  • With the growing importance of the fishery industry and the rapid growth of the aquaculture industry, research on smart farms through ICT convergence in the aquaculture field is in progress. To enable monitoring of the growing environment at the farm site, an underwater drone drive unit, an image collection device, an integrated controller for posture stabilization, and a remote control device capable of controlling and controlling drones through real-time underwater images were proposed, and design, development, and tests were conducted. By utilizing underwater drones, it is possible to replace the supply and demand of manpower and high-cost work in the aquaculture industry, and to manage fish farms in a stable manner by reducing the probability of farming deaths.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

A Case Study on the Vibration Propagation Characteristics by Underwater Rock Cutting Work (수중 쇄암작업에 따른 진동 전파 특성에 관한 시공 사례)

  • Lim, Dae-Kyu;Shin, Young-Cheol;Kim, Young-Min;Lee, Chung-Eon
    • Explosives and Blasting
    • /
    • v.33 no.2
    • /
    • pp.25-39
    • /
    • 2015
  • The common underwater rock removal methods involve underwater blasting and crane's chisel dropping impact method. From an environmental point of view, these methods cause ground vibrations and underwater noise. At the site for this study, a method of dropping heavyweight chisel is selected to remove the underwater bedrock near the ferry rack in the course of improving the cargo handling ability of the loading dock. A prediction formula for the vibration was obtained based on the measurement and evaluation of the vibrations caused by the chisel dropping impacts during the test droppings. The prediction formula was successfully applied to the main construction for securing the stability of the structure.

Bio-inspired Walking and Swimming Underwater Robot Designing Concept and Simulation by an Approximated Model for the robot (유영과 보행이 가능한 생체모방 수중 로봇의 설계개념과 근사모델을 활용한 모의실험)

  • Kim, Hee-Joong;Jun, Bong-Huan;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 2014
  • This paper describes the design concept of a bio-inspired legged underwater and estimating its performance by implementing simulations. Especially the leg structure of an underwater organism, diving beetles, is fully adopted to our designing to employ its efficiency for swimming. To make it possible for the robot to both walk and swim, the transformable kinematic model according to applications of the leg is proposed. To aid in the robot development and estimate swimming performance of the robot in advance, an underwater simulator has been constructed and an approximated model based on the developing robot was set up in the simulation. Furthermore, previous work that we have done, the swimming locomotion produced by a swimming patten generator based on the control parameters, is briefly mentioned in the paper and adopted to the simulation for extensive studies such as path planning and control techniques. Through the results, we established the strategy of leg joints which make the robot swim in the three dimensional space to reach effective controls.

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2020
  • Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.

Vision-based Sensor Fusion of a Remotely Operated Vehicle for Underwater Structure Diagnostication (수중 구조물 진단용 원격 조종 로봇의 자세 제어를 위한 비전 기반 센서 융합)

  • Lee, Jae-Min;Kim, Gon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Underwater robots generally show better performances for tasks than humans under certain underwater constraints such as. high pressure, limited light, etc. To properly diagnose in an underwater environment using remotely operated underwater vehicles, it is important to keep autonomously its own position and orientation in order to avoid additional control efforts. In this paper, we propose an efficient method to assist in the operation for the various disturbances of a remotely operated vehicle for the diagnosis of underwater structures. The conventional AHRS-based bearing estimation system did not work well due to incorrect measurements caused by the hard-iron effect when the robot is approaching a ferromagnetic structure. To overcome this drawback, we propose a sensor fusion algorithm with the camera and AHRS for estimating the pose of the ROV. However, the image information in the underwater environment is often unreliable and blurred by turbidity or suspended solids. Thus, we suggest an efficient method for fusing the vision sensor and the AHRS with a criterion which is the amount of blur in the image. To evaluate the amount of blur, we adopt two methods: one is the quantification of high frequency components using the power spectrum density analysis of 2D discrete Fourier transformed image, and the other is identifying the blur parameter based on cepstrum analysis. We evaluate the performance of the robustness of the visual odometry and blur estimation methods according to the change of light and distance. We verify that the blur estimation method based on cepstrum analysis shows a better performance through the experiments.

Development of Underwater Acoustic Micro Modem for Real-Time Monitoring of Underwater Environment and Ecosystem (수중 환경 및 생태 실시간 모니터링을 위한 초소형 수중 음향통신 모뎀 개발)

  • Jeon, Jun-Ho;Park, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.97-108
    • /
    • 2011
  • Systems for underwater environment monitoring and natural resources can be considered as a part of digital convergence where real-time data transmission is possible with the help of underwater wireless sensor network (UWSN). One of key technologies required for the deployment of the systems is underwater acoustic micro modem. In this work, we design and implement an acoustic modem equipped with a commercial omnidirectional transducer. We also make experiments at the northern Han river for the verification of the developed modem. According to the experiments, the modem supports the working distance of 250 m and the data rate of 200 bps with a negligible bit error rate. It is expected that the acoustic modem can be used for various applications based on UWSN in a near future.