Browse > Article
http://dx.doi.org/10.26748/KSOE.2020.016

Underwater Acoustic Research Trends with Machine Learning: Ocean Parameter Inversion Applications  

Yang, Haesang (Department of Naval Architecture & Ocean Engineering, Seoul National University)
Lee, Keunhwa (Department of Defense System Engineering, Sejong University)
Choo, Youngmin (Department of Defense System Engineering, Sejong University)
Kim, Kookhyun (School of Naval Architecture & Ocean Engineering, Tongmyong University)
Publication Information
Journal of Ocean Engineering and Technology / v.34, no.5, 2020 , pp. 371-376 More about this Journal
Abstract
Underwater acoustics, which is the study of the phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. Underwater acoustics is mainly applied in the field of remote sensing, wherein information on a target object is acquired indirectly from acoustic data. Presently, machine learning, which has recently been applied successfully in a variety of research fields, is being utilized extensively in remote sensing to obtain and extract information. In the earlier parts of this work, we examined the research trends involving the machine learning techniques and theories that are mainly used in underwater acoustics, as well as their applications in active/passive SONAR systems (Yang et al., 2020a; Yang et al., 2020b; Yang et al., 2020c). As a follow-up, this paper reviews machine learning applications for the inversion of ocean parameters such as sound speed profiles and sediment geoacoustic parameters.
Keywords
Underwater acoustics; Sonar system; Machine learning; Deep learning; Signal processing; Parameter inversion;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Baggeroer, A.B., Kuperman, W.A., & Mikhalevsky, P.N. (1993). An Overview of Matched Field Methods in Ocean Acoustics. IEEE Journal of Oceanic Engineering, 18(4), 401-424. https://doi.org/10.1109/48.262292   DOI
2 Benson, J., Chapman, N.R., & Antoniou, A. (2000). Geoacoustic Model Inversion Using Artificial Neural Networks. Inverse Problems, 16(6), 1627-1639. https://doi.org/10.1088/0266-5611/16/6/302   DOI
3 Bianco, M., Gerstoft, P. (2016). Compressive Acoustic Sound Speed Profile Estimation. The Journal of the Acoustical Society of America, 139(3), EL90-EL94.   DOI
4 Martin, K.M., Wood, W.T., & Becker, J.J. (2015). A Global Prediction of Seafloor Sediment Porosity Using Machine Learning. Geophysical Research Letters, 42(24), 10640-10646. https://doi.org/10.1002/2015GL065279   DOI
5 Michalopoulou, Z-H., Alexandrou, D., & de Moustier, C. (1995). Application of Neural and Statistical Classifiers to the Problem of Seafloor Characterization. IEEE Journal of Oceanic Engineering, 20(3), 190-197. https://doi.org/10.1109/48.393074   DOI
6 Park, J.C., & Kennedy, R.M. (1996). Remote Sensing of Ocean Sound Speed Profiles by a Perceptron Neural Network. IEEE Journal of Oceanic Engineering, 21(2), 216-224. https://doi.org/10.1109/48.486796   DOI
7 Parvulescu, A., & Clay, C.S. (1965). Reproducibility of Signal Transmission in the Ocean. Radio Electronic Engineer, 29(4), 223-228. https://doi.org/10.1049/ree.1965.0047   DOI
8 Rajan, S.D., Lynch, J.F., & Frisk, G.V. (1987). Perturbative Inversion Methods for Obtaining Bottom Parameters in Shallow Water. The Journal of the Acoustical Society of America, 82(3), 998-1017. https://doi.org/10.1121/1.395300   DOI
9 Shang, E.C. (1989). Ocean Acoustic Tomography Based on Adiabatic Mode Theory. The Journal of the Acoustical Society of America, 85(4), 1531-1537. https://doi.org/10.1121/1.397355   DOI
10 Stephens, D., & Diesing, M. (2014). A Comparison of Supervised Classification Methods for the Prediction of Substrate Type Using Multibeam Acoustic and Legacy Grain-size Data. Plos One, 9(4), e93950.   DOI
11 Tartakovsky, D.M., Guadagnini, A., & Wohlberg, B.E. (2008). Machine learning methods for inverse modeling. Geostatistics for Environmental Applications, 117-125, Springer Science Business Media.
12 Tolstoy, A. (1992). Linearization of the Matched Field Processing Approach to Acoustic Tomography. The Journal of the Acoustical Society of America, 91(2), 781-787. https://doi.org/10.1121/1.402538   DOI
13 Candes, E.J., & Wakin, M.B. (2008). An Introduction to Compressive Sampling. IEEE Signal Processing Magazine, 25(2), 21-30.   DOI
14 Bianco, M., & Gerstoft, P. (2017). Dictionary Learning of Sound Speed Profiles. The Journal of the Acoustical Society of America, 141(3), 1749-1758.   DOI
15 Bucker, H.P. (1976). Use of Calculated Sound Fields and Matched Field Detection to Locate Sound Sources in Shallow Water. The Journal of the Acoustical Society of America, 59(2), 368-373.   DOI
16 Buscombe, D., & Grams, P.E. (2018). Probabilistic Substrate Classification with Multispectral Acoustic Backscatter: A Comparison of Discriminative and Generative Models. Geoscience, 8(11), 395. https://doi.org/10.3390/geosciences8110395   DOI
17 Caiti, A., & Jesus, S.M. (1996). Acoustic Estimation of Seafloor Parameters: A Radial Basis Functions Approach. The Journal of the Acoustical Society of America, 100(3), 1473-1481.   DOI
18 Choo, Y., & Seong, Y. (2018). Compressive Sound Speed Profile Inversion Using Eamforming Results. Remote Sensing, 10, 704.   DOI
19 Clay, C.S. (1966). Use of Arrays for Acoustic Transmission in a Noisy Ocean. Review of Geophysics, 4(4), 475-507.   DOI
20 Clay, C.S. (1987). Optimum Time Domain Signal Transmission and Source Location in a Waveguide. The Journal of the Acoustical Society of America, 81(3), 660-664.   DOI
21 Clay, C. S., & Li, S. (1988). Time Domain Signal Transmission and Source Location in a Waveguide: Matched Filter and Deconvolution Experiments. The Journal of the Acoustical Society of America, 83(4), 1377-1417.   DOI
22 Collins, M.D., & Kuperman, W.A. (1991). Focalization: Environmental Focusing and Source Localization. The Journal of the Acoustical Society of America, 90(3), 1410-1422.   DOI
23 Yang, H., Lee, K., Choo, Y., Kim, K. (2020a). Underwater Acoustic Research Trends with Machine Learning: General Background. Journal of Ocean Engineering and Technology, 34(2), 147-154. https://doi.org/10.26748/KSOE.2020.015   DOI
24 Tolstoy, A. (1993). Matched Field Processing for Underwater Acoustics. Singapore: World Scientific.
25 Tolstoy, A., Chapman, N.R., & Brooke, G. (1998). Workshop '97: Benchmarking for Geoacoustic Inversion in Shallow Water. Journal of Computational Acoustics, 6(1&2), 1-28. https://doi.org/10.1142/S0218396X9800003X   DOI
26 Tolstoy, A., Diachok, O., & Frazer, L.N. (1991). Acoustic Tomography via Matched Field Processing. The Journal of the Acoustical Society of America, 89(3), 1119-1127. https://doi.org/10.1121/1.400647   DOI
27 Yang, H., Lee, K., Choo, Y., & Kim, K. (2020b). Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications. Journal of Ocean Engineering and Technology, 34(3), 227-236. https://doi.org/10.26748/KSOE.2020.017   DOI
28 Yang, H., Byun, S.-H., Lee, K., Choo, Y., & Kim, K. (2020c). Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications. Journal of Ocean Engineering and Technology. In Press. https://doi.org/10.26748/KSOE. 2020.018
29 Yardim, C., Gerstoft, P., Hodgkiss, W.S., & Traer, J. (2014). Compressive Geoacoustic Inversion Using Ambient Noise. The Journal of the Acoustical Society of America, 135(3), 1245-1255. https://doi.org/10.1121/1.4864792   DOI
30 Collins, M.D., Kuperman, W.A., & Schmidt, H. (1992). Nonlinear Inversion for Ocean-bottom Properties. The Journal of the Acoustical Society of America, 92, 2770-2783.   DOI
31 Diesing, M., Green, S.L., Stephens, D., Lark, R.M., Stewart, H.A., & Dove, D. (2014). Mapping Seabed Sediment: Comparison of Manual, Geostatistical, Object-based Image Analysis and Machine Learning Approaches. Continental Shelf Research, 84, 107-119. https://doi.org/10.1016/j.csr.2014.05.004.   DOI
32 Dosso, S.E., Yeremy, M.L., Ozard, J.M., & Chapman, N.R. (1993). Estimation of Ocean Bottom Properties by Matched-field Inversion of Acoustic Field Data. IEEE Journal of Oceanic Engineering, 18, 232-239.   DOI
33 Gerstoft, P. (1994). Inversion of Seismoacoustic Data Using Genetic Algorithms and a Posteriori Probability Distribution. The Journal of the Acoustical Society of America, 95, 770-782.   DOI
34 Gerstoft, P., Mecklenbrauker, C.F., Seong. W., & Bianco, M. (2018). Introduction to Compressive Sensing in Acoustics. The Journal of the Acoustical Society of America, 143(6), 3731-3736. https://doi.org/10.1121/1.5043089   DOI
35 Jain, S., & Ali, M.M. (2006). Estimation of Sound Speed Profiles Using Artificial Nural Network. IEEE Geoscience and Remote Sensing Letters, 3(4), 467-470. https://doi.org/10.1109/LGRS.2006.876221   DOI
36 Lindsay, C.E., & Chapman, N.R. (1993). Matched Field Inversion for Geoacoustic Model Parameters Using Adaptive Simulated Annealing. IEEE Journal of Oceanic Engineering, 18(3), 224-231. https://doi.org/10.1109/JOE.1993.236360   DOI
37 Lynch, J.F., Rajan, S.D., & Frisk, G.V. (1991). A Comparison of Broadband and Narrow-band Modal Inversions for Bottom Properties at a Site Near Corpus Christi, Texas. The Journal of the Acoustical Society of America, 89(2), 648-665. https://doi.org/10.1121/1.400676   DOI