• Title/Summary/Keyword: underwater communication channel

Search Result 200, Processing Time 0.026 seconds

An Approach for Implementation of Underwater Acoustic Communication Channel using 2-D TLM Modeling and Cross-Correlation Function

  • Park, Kyu-Chil;Yoon, Jong-Rak
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.163-167
    • /
    • 2010
  • In underwater acoustic communication, acoustic signals from transducers or hydrophones are used. And the underwater acoustic communication channels are very complicated, because of vertical distribution of acoustic velocity according depths, and reflections from boundaries like as surface or bottom. For the implementation of the underwater acoustic communication channel, the image method or ray tracing method have been used. In this paper, we introduce a new approach for implementation of underwater acoustic communication channel using the simulation of the Transmission Line Matrix Modeling and cross-correlations from the input and output signals.

Underwater Acoustic Communication Research using Blind Channel identification (블라인드 채널추정기법(Blind Channel Identification)을 이용한 수중통신 연구)

  • Kim, Kap-Su;Cho, A-Ra;Choi, Young-Chol;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.165-169
    • /
    • 2007
  • Due to the complexity of underwater acoustic channel, signal estimation in underwater acoustic communication field is considerably affected from time-varying multipath fading channels. On this reason, the original signals should have many long training signals to estimate the channel and the purposed signals, and the bit rate of signals having information may have small rate. In order to avoid this loss of efficiency in underwater communication, this paper employed a blind channel identification method which don't use training signals. Simulations have predicted performance of the employed method in multipath environment and an aquatic plant experiment has verified the simulation results.

  • PDF

Performance of Adaptive Equalizer in the Shallow Underwater Acoustic Communication Channel (천해 수중 음향 통신 채널에서 적응 등화기의 성능)

  • Choi, Hyun-Kyu;Lee, Sangmin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • The inter-symbol interference(ISI) is one of the main obstacles to reliable high-rate data communication in the shallow underwater acoustic channel. This paper studies on the simulation of adaptive equalizer used as a means of mitigating the ISI in the shallow underwater acoustic communication system. The underwater channel is modeled as a superposition of multiple paths, whose lengths and relative delays are calculated from the channel geometry. Based on this channel model, computer simulations are carried out to investigate the performance of adaptive equalizer in the shallow underwater acoustic channel.

An improved sparsity-aware normalized least-mean-square scheme for underwater communication

  • Anand, Kumar;Prashant Kumar
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.379-393
    • /
    • 2023
  • Underwater communication (UWC) is widely used in coastal surveillance and early warning systems. Precise channel estimation is vital for efficient and reliable UWC. The sparse direct-adaptive filtering algorithms have become popular in UWC. Herein, we present an improved adaptive convex-combination method for the identification of sparse structures using a reweighted normalized leastmean-square (RNLMS) algorithm. Moreover, to make RNLMS algorithm independent of the reweighted l1-norm parameter, a modified sparsity-aware adaptive zero-attracting RNLMS (AZA-RNLMS) algorithm is introduced to ensure accurate modeling. In addition, we present a quantitative analysis of this algorithm to evaluate the convergence speed and accuracy. Furthermore, we derive an excess mean-square-error expression that proves that the AZA-RNLMS algorithm performs better for the harsh underwater channel. The measured data from the experimental channel of SPACE08 is used for simulation, and results are presented to verify the performance of the proposed algorithm. The simulation results confirm that the proposed algorithm for underwater channel estimation performs better than the earlier schemes.

The Study about Channel code to Overcome Multipath of Underwater Channel (수중통신채널에서 다중경로 극복을 위한 오류정정부호에 대한 연구)

  • Kim, Nam-Soo;Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.738-745
    • /
    • 2009
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes receive signal to make error floor. In this paper, we propose the underwater communication system using various channel coding schemes such as RS coding, convolutional code, turbo code and concatenated code for overcoming the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error. So interleaver has not effect on error correcting. For correcting of error floor by multipath, it is necessary to use strong channel codes like turbo code. Turbo code is one of the iterative codes. And the performance of concatenated codes including RS code has better performance than using singular channel codes.

Performance Comparison of Image Transmission in Underwater Acoustic Environment (수중 음향 환경에서의 영상 전송 성능 비교분석)

  • Lee, Seung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2008
  • Underwater acoustic(UWA) communication is one of the most difficult field in terms of severe channel environments such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of the image transmission using vertical sensor array instead of single sensor in the viewpoint of bit error rate(BER), constellation diagram, and received image quality.

Simulation of Time Delay Communication algorithm In the Shallow Underwater Channel

  • Yoon, Byung-Woo;Eren Yildirim, Mustafa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The need of data transmission in oceans and other underwater mediums are increasing day by day, so as the research. The underwater medium is very different from that of air. Propagation of electromagnetic wave in water or underground is very difficult because of the conductivity of the propagation materials. In this case, we usually use acoustic signals as ultrasonic but, they are not easy to transfer long distance with coherent method because of time varying multipaths, Doppler effects and attenuations. So, we use non-coherent methods such as FSK or ASK to communicate between long distances. But, as the propagation speed of acoustic wave is very slow, BW of the channel is narrow. It is very hard to guaranty the enough speed for the transmission of digital image data. In previous studies, we proposed this data communication protocol theoretically. In this paper, an underwater channel is modeled and this protocol is tested in this channel condition. The results show that the protocol is 4-6 times faster than ASK. Some relations and results are shown depending on the data length, channel length, bit rate etc.

Performance of Denoising Autoencoder for Enhancing Image in Shallow Water Acoustic Communication (천해 음향 통신에서 이미지 향상을 위한 디노이징 오토인코더의 성능 평가)

  • Jeong, Hyun-Soo;Lee, Chae-Hui;Park, Ji-Hyun;Park, Kyu-Chil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.327-329
    • /
    • 2021
  • Underwater acoustic communication channel is influenced by environmental parameters such as multipath, background noise and scattering. Therefore, a transmitted signal is influenced by the sea surface and the sea bottom boundaries, and a received signal shows a delay spread. These factors create a noise in the image and degrade the quality of underwater acoustic communication. To solve these problems, in this paper, we evaluate the performance of an underwater acoustic communication model using a denoising auto-encoder used for unsupervised learning. Noise images generated by the underwater multipath channel were collected and used as training data. Experimental results were analyzed as a PSNR parameter that expressed the noise ratio of the two images.

MIMO Vector Channel Modeling and Performance Analysis in Underwater Channel Environments (수중 MIMO 벡터 채널 모델링 및 성능 분석)

  • Lee, Deok-Hwan;Ko, Hak-Lim;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.8
    • /
    • pp.426-431
    • /
    • 2007
  • In this paper we have studied the underwater vector channel modeling for MIMO(Multiple Input Multiple Output) to increase the performance and efficiency for ultrasound communication in underwater channel environments. Also we have analyzed the MIMO techniques using the proposed channel modeling. For underwater MIMO channel modeling. experiments were done in real channel environments and the data were analyzed to estimate parameters such as fading, Doppler, time delay, angle of arrival, and receiving power. These were used for modeling of underwater vector channel modeling for MIMO. Additionally, we have analyzed the performance of MIMO systems using our proposed channel models. As a result we could see that the BER has decreased severely with the same SNR when using the MIMO system.

Underwater Acoustic wireless Communication using offset PSK (오프셋 위상변조 방식을 이용한 수중에서의 파라메트릭 음향 무선통신)

  • Kim, Kap-Su;Lim, Yong-Kon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.231-234
    • /
    • 2008
  • The paper proposed the new underwater wireless communication system fitted to non-linear acoustic channel. Generally, in non-linear acoustic channel, one used to do acoustic communication using parametric effect that is some effect caused from acoustic wave having frequency different of two primary acoustic wave frequency. In the paper, Offset PSK communication method fitted to non-linear acoustic channel was proposed, and it was demonstrated through simulations.

  • PDF