• Title/Summary/Keyword: underwater acoustic

Search Result 777, Processing Time 0.022 seconds

High Frequency Acoustic Scattering Analysis of Underwater Target (수중표적에 대한 고주파수 음향산란 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung;Kim, Jong-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.528-533
    • /
    • 2005
  • A mono-static high frequency acoustic target strength analysis scheme was developed for underwater targets, based on the far-field Kirchhoff approximation. Au adaptive triangular beam method and a concept of virtual surface were adopted for considering the effect of hidden surfaces and multiple reflections of an underwater target, respectively. A test of a simple target showed that the suggested hidden surface removal scheme is valid. Then some numerical analyses, for several underwater targets, were carried out; (1) for several simple underwater targets, like sphere, square plate, cylinder, trihedral corner reflector, and (2) for a generic submarine model, The former was exactly coincident with the theoretical results including beam patterns versus azimuth angles, and the latter suggested that multiple reflections have to be considered to estimate more accurate target strength of underwater targets.

Filter orthogonal frequency-division multiplexing scheme based on polar code in underwater acoustic communication with non-Gaussian distribution noise

  • Ahmed, Mustafa Sami;Shah, Nor Shahida Mohd;Al-Aboosi, Yasin Yousif;Gismalla, Mohammed S.M.;Abdullah, Mohammad F.L.;Jawhar, Yasir Amer;Balfaqih, Mohammed
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.184-196
    • /
    • 2021
  • The research domain of underwater communication has garnered much interest among researchers exploring underwater activities. The underwater environment differs from the terrestrial setting. Some of the main challenges in underwater communication are limited bandwidth, low data rate, propagation delay, and high bit error rate (BER). As such, this study assessed the underwater acoustic (UWA) aspect and explored the expression of error performance based on t-distribution noise. Filter orthogonal frequency-division multiplexing refers to a new waveform candidate that has been adopted in UWA, along with turbo and polar codes. The empirical outcomes demonstrated that the noise did not adhere to Gaussian distribution, whereas the simulation results revealed that the filter applied in orthogonal frequency-division multiplexing could significantly suppress out-of-band emission. Additionally, the performance of the turbo code was superior to that of the polar code by 2 dB at BER 10-3.

Underwater Acoustic Image Classification of a Cylindrical object using the Hough Transformation and Nth Degree Polynomial Interpolation (N차 다항식 보간법과 허프 변환을 이용한 원통형 수중 물체 영상 식별)

  • Jeong, Euicheol;Shim, Taebo;Kim, Jangeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.193-200
    • /
    • 2013
  • In this paper, underwater acoustic image classification of a cylindrical object using the Hough transformation is proposed. Hough transformation is often used to classify a cylindrical object in the optical systems. However, it is difficult to apply to the underwater acoustic image system because of lower resolution and noisier underwater environments. Thus, the cylindrical object was modeled and its geometric depth(GD) pixels were restored in order to make them suitable for the Hough transformation by using moving average filter and a polynomial interpolation method. As a result, restored GD pixels are similar to original ones and test results show high performance in classification.

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Underwater acoustic communication system using diversity based on ray modeled underwater acoustic channel in Yellow Sea (다이버시티 기법을 이용한 서해에서의 음선 모델기반 수중음향통신 시스템)

  • Kang, Jiwoong;Kim, Hyeonsu;Ahn, Jongmin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • This paper proposes an adequate UWA (Underwater Acoustic) communication system of underwater communication network in the Yellow Sea. UWA channel is obtained from Bellhop ray tracing method with Yellow Sea environments. Based on this channel, communication parameters for CDMA (Code Division Multiple Access) and SC-FDM (Single Carrier-Frequency Division Multiplexing) using diversity techniques are calculated. In order to prove the proposed methods, BER (Bit Error Rate) and data rate are obtained using computer simulations and the adequate communication system for long rms delay spread and low Eb/No environments is proposed from the simulation.

Performance Comparison of Space Time block coded Frequency Domain Equalization transmission Scheme in Underwater Acoustic Communication Channel (수중음향 통신채널 환경에서 시공간 블록부호를 적용한 주파수영역 등화기법의 성능평가)

  • Hwang, Hoseon;Lee, Seokwoo;Kang, Yeongsik;Choi, Jaehoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.177-185
    • /
    • 2019
  • In this paper, we propose and evaluate a FDE combined with STBC transmission structure to cancellation of ISI in underwater acoustic communication. To achieve this purpose, underwater acoustic channels are modeled and the simulation results are presented. In case of STBC-FDE, the transmission rate is less about 4% than STBC-OFDM, but the SER performance is better than STBC-OFDM that is larger from 4.4% to 16.8% at the SNR of 15dB than STBC-OFDM.

Development of an Acoustic-Based Underwater Image Transmission System

  • Choi, Young-Cheol;Lim, Yong-Kon;Park, Jong-Won;Kim, Sea-Monn;Kim, Seung-Geun;Kim, Sang-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.109-114
    • /
    • 2003
  • Wireless communication systems are inevitable for efficient underwater activities. Because of the poor propagation characteristics of light and electromagnetic waves, acoustic waves are generally used for the underwater wireless communication. Although there are many kinds of information type, visual images take an essential role especially for search and identification activities. For this reason, we developed an acoustic-based underwater image transmission system under a dual use technology project supported by MOCIE (Ministry of Commerce, Industry and Energy). For the application to complicated and time-varying underwater environments all-digital transmitter and receiver systems are investigated. Array acoustic transducers are used at the receiver, which have the center frequency of 32kHz and the bandwidth of 4kHz. To improve transmission speed and quality, various algorithms and systems are used. The system design techniques will be discussed in detail including image compression/ decompression system, adaptive beam- forming, fast RLS adaptive equalizer, ${\partial}/4$ QPSK (Quadrilateral Phase Shift Keying) modulator/demodulator, and convolution coding/ Viterbi. Decoding.

  • PDF

Theoretical Development and Experimental Investigation of Underwater Acoustic Communication for Multiple Receiving Locations Based on the Adaptive Time-Reversal Processing (다중수신 수중음향통신을 위한 적응 시계열반전처리 기법의 이론연구와 실험적 검증)

  • Shin Kee-Cheol;Byun Yang-Hun;Kim Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.239-245
    • /
    • 2006
  • Time-reversal processing (TRP) has been shown as an effective way to focus in both time and space. The temporal focusing properties have been used extensively in underwater acoustics communications. Recently. adaptive time-reversal processing (ATRP) was applied to the simultaneous multiple focusing in an ocean waveguide. In this study. multiple focusing with ATRP is extended to the underwater acoustic communication algorithm for multiple receiving locations. The developed algorithm is applied to the underwater acoustic communication to show, via simulation and real data, that the simultaneous self-equalization at multiple receiving locations is achieved.

Investigation on Shapes and Acoustic Characteristics of Air Bubbles Generated by an Underwater Nozzle (수중 노즐에서 발생하는 기포의 형상 및 음향 특성 연구)

  • Kim, Jong-Chul;Oh, Joon-Seok;Cho, Dae-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.2 s.107
    • /
    • pp.190-197
    • /
    • 2006
  • It is well known that the acoustic characteristics of the sea are significantly affected by bubbles which have their own inherent characteristics at the undersea. In this study, the shape and acoustic characteristics of air bubbles generated by an underwater nozzle are calculated numerically, and are measured with a high speed camera and a hydrophone at various air flow rates in the experimental apparatus. As a result of analysis, the shape calculated numerically well matched with measured values at low flow rates, but in case of relatively higher flow rates. the use of correction coefficient is needed for more accurate estimation of the bubble shape. And also the rising velocity of a single bubble is constant regardless of both the bubble size and the flow rate. and the acoustic signal generated when the bubble is produced by an underwater nozzle has the same characteristic of natural frequency of the bubble pulsation, and is agreed with Minnaert's equation if the correction coefficient is considered in accordance with the flow rate.

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors (분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구)

  • Youngkuk Choi;Hyoyoung Jung;Huioon Kim;Myoung Jin Kim;Hee-Woon Kang;Young Ho Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.