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1  |   INTRODUCTION

The shallow underwater acoustic (UWA) channel has been 
considered one of the most difficult channels for wireless 
communication because of several shortcomings, such as low 
data rate, bandwidth limitation, high multipath interference, 
major Doppler shifts, and severe fading [1–3]. The main mo-
tivation to use sound waves over electromagnetic signals is 
due to the relatively lower attenuation in the underwater envi-
ronment [4]. A UWA channel has poor communication qual-
ity and high propagation delay; consequently, the bit error 

rate (BER) is increased [5]. However, the channel coding 
techniques can significantly decrease BER at the expense of 
some bandwidth loss of communication.

The channel coding techniques add a redundancy of useful 
bits for data protection in a noisy channel [6]. The following 
commonly employed channel coding techniques in wireless 
communication have been thoroughly investigated consider-
ing UWA: low-density parity check (LDPC) code, convolution 
code (CC), Reed-Solomon (RS) code, and turbo code. Seo and 
others [7] assessed the effectiveness of the RS code and CC in 
the context of a UWA fading channel. The simulated findings of 
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RS code and CC demonstrated better performance for selective 
and nonselective frequency fading, respectively. Another study 
tested various types of error correction schemes, including CC 
and RS block codes, on a UWA channel [8]. The results revealed 
that both RS code and CC could reduce BER to 10−2−10−4, al-
though CC displayed better quality than the RS code. Huang 
and others [9] proposed nonbinary LDPC codes in multicarrier 
UWA communications. Their findings showed that the scheme 
could hit a zero BER with real data when compared to a large 
BER via CC. This is because the LDPC code has greater error 
correction capability than CC does, despite the drawbacks of 
the former [5,10]. In the context of a very shallow Singaporean 
water channel, a study assessed coded orthogonal frequency-di-
vision multiplexing (OFDM) based on non-Gaussian noise [2]. 
Here, two convolution codes were applied between each code 
interleave, whereas the Viterbi algorithm was used at the re-
ceiver to decode CC. Consequently, the BER performance of 
OFDM was significantly improved by incorporating an inter-
leaver and concatenated CC. The performance of the system 
was due to low BER and a simplified coded OFDM scheme that 
was intricate in its computation for underwater communication. 
The UWA single-carrier code division multiple access (UWA/
SCCDMA) simulation system based on MATLAB was pro-
posed by Liu and others (2017) [11]. Based on repeat accumu-
late (RA), turbo, and LDPC coding, the simulation results for 
RS, turbo, and LDPC coding showed that the UWA/SCCDMA 
displayed exceptional performance, whereby the BER was 
below 10−6 for the UWA channel with a low signal-to-noise 
ratio (SNR) ranging between −12 dB and −10 dB. The system 
demonstrated the best performance for turbo coding with the 
Log-MAP algorithm, and the channel simulation was based on 
additive white Gaussian noise (AWGN). Turbo code has certain 
drawbacks, such as the need for an interleaver, high algorithm 
complexity of decoding, and time delay, whereas LDPC codes 
are stronger than turbo codes in the underwater digital speech 
communication system. This was observed by [12] who com-
pared the efficiency of LDPC and turbo codes using a code rate 
of 1/2. The results revealed a higher efficiency of digital speech 
signal transmission upon using LDPC code. Note that the chan-
nel used by [12] was AWGN. However, if the system can handle 
long delays and complexities, the turbo code is recommended, 
as it is one of the most efficient error correction codes.

Orthogonal frequency-division multiplexing has been con-
sidered an effective multicarrier modulation system across 
numerous communication-based systems [2]. OFDM depends 
on the split of the existing bandwidth into several subcarriers, 
whereby every subcarrier would experience frequency-flat 
fading. Notably, OFDM is robust against multipath channels. 
This is accomplished by incorporating a greater cyclic prefix 
than the long delay of multipath. The single-tap filter is also 
demanded by the receiver equalizer for every subcarrier.

Orthogonal frequency-division multiplexing could offer 
reliable communication upon being embedded with channel 

coding. In fact, several underwater channels have applied 
systems coded with OFDM such as [1,3]. However, several 
issues need to be addressed in using OFDM [9], such as the 
issue of the peak-to-average power ratio (PAPR). Although 
huge power back-off can enhance the transmission range, the 
PAPR can be significantly reduced by using various reduc-
tion techniques, namely selective clipping method, partial 
transmission sequence method, and mapping method [13,14].

In signal processing, the Gaussian distribution has some es-
sential properties with low computational complexity, whereby 
white Gaussian noise can be applied for background noise. Other 
underwater noises observed in a UWA channel are environment 
noise, target self-noise, and radiation noise. These noises are 
viewed as complex non-Gaussian noises that can increase the 
probability error of code words at the receiver end in a com-
munication system. Several studies assessed various locations 
for UWA noise and revealed that noise did not adhere to the 
Gaussian distribution [4,15–19]. The use of a probability density 
function (PDF), along with a wide tail, could identify the per-
formance and type of noise [18–20]. A study confirmed that the 
algorithm proposed based on Gaussian mixture (GM) success-
fully estimated the noise PDF [21]. Chitre [4] discovered that 
noise dispersion in shallow water adhered to symmetric α-sta-
ble to snap shrimp-dominated ambient noise with a parameter 
characteristic of 1.69 and a scale parameter of 6.8 × 10−4 μPa. 
Some researchers observed that the distribution of noise in an 
underwater setting failed to adhere to the Gaussian distribution 
[3,9,22,23]. Therefore, the BER is high in underwater communi-
cation due to nonwhite and non-Gaussian noise properties [24].

This paper proposes a new polar code construction scheme 
adequate for multicarrier UWA F-OFDM communication sys-
tems, and the results were compared with those of turbo code. 
In addition, the expression of error symbol performance based 
on a non-Gaussian distribution channel is presented in this paper.

The rest of this paper is organized as follows. The UWA 
noise model is elaborated in Section 2. Section 3 presents the 
communication system design. The filter-OFDM for UWA 
and channel coding are shown in Sections 4 and 5, respec-
tively. The results and discussion are presented in Section 6. 
Finally, this paper is concluded in Section 7.

2  |   UNDERWATER ACOUSTIC 
NOISE MODEL

Defining noise characteristics in communication is significant 
for the system design because they determine the type of chan-
nel used in communications. Numerous studies have explored 
various seas, including shallow waters. Noise distributions do 
not adhere to the Gaussian distribution. In this study, field ex-
periments were conducted to analyze noise characteristics.

Field trials were performed at Senggarang, Batu Pahat, 
Johor, Malaysia (latitude 1°49′21.8″N and longitude 
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102°50′14.3″E), on May 16, 2018, by using GPS to gather 
samples of signal, and to determine the UWAN statistical 
attributes. The study area is illustrated in Figure 1. The sig-
nal samples were obtained using a broadband hydrophone 
(Dolphin EAR 200 Series) positioned approximately 2.5 km 
offshore at the frequency range 7 kHz−22  kHz. From the 
measurements obtained at a depth of 15  m, those ranging 
1m−12 m were considered for this study. Using TDS-3, the 
measured temperature of sea surface was 29°C, and the speed 
of wind was seven knots. With a salinity of 35 ppt and 7.8 pH, 
a sample with a duration of 20 s was obtained at every depth.

The hydrophone was used to record UWAN, and the sam-
ples were converted into discrete time to enable more storage 
of processing in a personal computer. The measurements were 
based on various depths. Table 1 presents the factor specifi-
cations for data collection in this study. The time representa-
tion waveform for UWAN data gathered from two depths (8 
m and 12 m) is presented in Figure 2. Figure 3 displays the 
time and frequency representation of the data. It describes 
both the time and frequency of the noise signal.

The data distribution was analyzed using the Gaussian 
and t-distributions by applying the fitting tool in MATLAB. 
By comparing the two distribution methods, Figure 4 shows 
that the PDF of UWAN adhered to the t-distribution, whereas 
the Gaussian distribution appeared inapt for UWAN.

Table 2 presents the degree of freedom for various depths 
for a short duration out of the total time. The state of UWAN 
was assumed stationary [17], and the average degree of 

freedom was approximately 3. As UWAN was impulsive, the 
period of analysis was altered for the varied depths.

The PDF of t-distribution is expressed by the following 
equation [25]:

where Γ(·) refers to the gamma function, and nu denotes the de-
gree of freedom that controls the distribution. A low nu results 
in wider PDF tails, whereas a high nu decreases the tails and 
converts it to Gaussian distribution. ρ(l, nu) refers to the prob-
ability of observing a particular value of l from t-distribution 
with nu. The PDF in (1) displays zero mean and its variance 
is nu/(nu − 2), where nu ≥ 2. This signifies that the UWAN 
dismissed AWGN but adhered to t-distribution. To model a ran-
dom variable X with variance σ > 2, the following changes in 
variables should be made:

(1)�(l,nu) =
Γ
�
(nu+1) ∕2

�
√
�nu Γ (nu∕2)

�
1+

l2

nu

� −(nu+1)

2

(2)l=

√
nu

�2 (nu−2)
x.

F I G U R E  1   Experiment testing site

T A B L E  1   Factor specifications for data collection

No. Factors Values

1. Location (1°49′21.8″N 102°50′14.3″E)

2. Frequency range 7 kHz–22 KHz

3. Surface temperature 29°C

4. Speed of wind 7 knots

5. Salinity 35 ppt

6. Depth 1 m–12 m

7. Sample of length 20 s

8. pH 7.8

F I G U R E  2   Time representation of UWAN at two depths: (A) 
8 m and (B) 12 m
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Accordingly, a new scaled PDF function can be written as,

For nu = 3, the PDF is,

The error performance is derived using the binary phase-
shift keying (BPSK) signal. Finally, the symbol error proba-
bility of the binary UWAN channel can be expressed as [18]:

The quadrature phase-shift keying (QPSK) constellation 
has dual BPSK signals at the quadrature stage. As noise does 
not rely statistically on quadrature elements, the following de-
picts the two-bit symbol for correct decision probability [16]:

where P2 indicates the symbol error probability for BPSK modu-
lation order. As P2 = PBPSK, the QPSK symbol error probability 
is as follows:

When nu = three, (5) is substituted in (7) so that the QPSK 
symbol error probability is given as,

3  |   COMMUNICATION SYSTEM 
DESIGN

A UWA multicarrier F-OFDM communication system struc-
ture is proposed in this paper, in which the signal processing 
embeds a transmitter and receiver. Figure 5 illustrates the un-
derwater acoustic system (UWAS) based on F-OFDM, where 
the input data sequence X was encoded initially to generate 
the encoded data sequence X′. Various phase-shift keying 
(PSK) modulation families were used to map X′. Next, the 
baseband data were oversampled by inserting zeroes between 
the samples. The inverse fast Fourier transform (IFFT) was 
used to convert the data sequence to the time domain from 
the frequency domain.

The cyclic prefix (CP) operation expanded the OFDM sig-
nal in time domain, in which the CP had a 7% value from the 
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F I G U R E  3   UWAN time and frequency representation at two 
depths: (A) 8 m and (B) 12 m
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T A B L E  2   Degree of freedom for the various depths

Depth (m) Period (s) Degree of freedom (μm)

1 2.3 2.92

4 1.2 2.71

8 1.4 3.32

12 0.95 3.71
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total data [26,27]. Finally, the OFDM signal x(n) was moved 
to a transmitter filter f(n) to generate an F-OFDM transmit-
ting signal g(n).

The signal obtained at the receiver end was passed to 
a matching filter [28]. The serial data were converted into 
parallel, and the CP was discarded. Subsequently, fast 
Fourier transform (FFT) was employed to convert the data 
sequence to the frequency domain from the time domain. 
Oversampling was removed, a parallel signal was converted 
into serial, and various PSK demodulations were applied. 
Finally, decoding was performed to recover the encoded 
input data stream.

4  |   FILTER-OFDM FOR UWA

F-OFDM has been recommended as a candidate waveform 
framework for 5G wireless communication. The aim of 
F-OFDM is to minimize interruptions between adjacent sub-
bands. Hence, to mitigate the out-of-band emission (OOBE), 
the OFDM baseband signal is usually filtered using a band-
limited filter in every subband. This constricts the interruption 
from adjacent subbands to an extent. The suppression of OOBE, 
asynchronous transmission, and low latency are the typical fea-
tures of filter-based waveform frameworks. Reducing the guard 
band between the symbols to increase the band in OFDM is 
essential to improve the data rate by minimizing the OOBE as 
illustrated in Figure 6. Thus, F-OFDM was applied to UWAS 
to improve the spectral efficiency and to increase the data rate.

(10)g(n)= x(n)∗ f(n).

F I G U R E  4   Comparison of UWAN distribution with Gaussian 
and t-distributions at (A) 8 m and (B) 12 m
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The design of the filter is integral for F-OFDM to achieve 
both frequency localization and more flexibility for time-fre-
quency localization, mainly because the desired frequen-
cy-domain localization leads to dispersion in the time domain 
[29]. The signal in an OFDM system has a rectangular pulse 
shape (sinc function), which leads to large side lobes on both 
sides of the signal in the frequency domain. Consequently, the 
frequency spectrum is not well localized. The sinc impulse 
response filter in F-OFDM, that is, a low-pass filter (LPF), 
is a suitable spectrum-shaping filter for the system due to its 
ability to suppress OOBE, in addition to not distorting the sig-
nal passband. A time windowing mask offers excellent time 
localization, in addition to assuring a smooth transition at both 
filter impulse response ends [30]. The FIR filter is designed 
by multiplying the infinite impulse response of the LPF with 
a finite time-domain window [31]. The sinc impulse response 
filter of the time domain is as follows:

where hLPF(n) is the sinc impulse response of the LPF, wc refers 
to the cut-off frequency of the LPF, and w(n) denotes the impulse 
response of the windowing mask. Adopting a suitable window 
function offers a trade-off that is flexible for time-frequency lo-
calization, which also limits the intersymbol interference (ISI) 
to a permissible level. As for F-OFDM, the rooted raised cosine 
(RRC) is more adequate, as it is more flexible than other existing 
window functions (eg, Remez and Hanning) [32]. The following 
expresses the time response of the RRC window [31]:

where L symbolizes the length of the filter, which is equal to 
half of the OFDM symbol length + 1, and α indicates the factor 
of roll-off, which limits the shape of the window to 0 ≤ α ≤ 1. 
Figure 7 shows that α = 1 denotes a hamming window, whereas 
α = 0 signifies a rectangular window. F-OFDM allows its filter 
length to exceed that of the CP to gain a balance for time-fre-
quency localization and to attain better flexibility for the design 
of the filter [33]. However, more balance is acquired for time-fre-
quency localization with the factor of roll-off in the RRC win-
dow. Consequently, the RRC window is more suitable for the 
F-OFDM system than the other windows.

5  |   CHANNEL CODING

To gain an efficient acoustic system with a highly improved 
communication link, the channel coding was applied to any 
remaining error in the system. The main objective is to in-
crease the BER reduction rate to an optimum level. In this 
study, two channel coding techniques were applied, namely 
turbo code and polar code.

5.1  |  Turbo code

Turbo codes are generally made of two parallel convo-
lution encoders segregated by an interleaver [34]. The 
aim is to select the most appropriate interleaver and to 
construct polynomial codes for each encoder. As each 
encoder is deemed convolutional, the interleaver is as-
sessed as a new component at the encoding stage. A turbo 
encoder using an interleaver is presented in Figure 8. The 
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(12)hLPF(n)=
sin(wc ⋅n)

wc ⋅n
,
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F I G U R E  6   Differences between OFDM and F-OFDM

F I G U R E  7   Window of passband with various roll-off factors
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initial encoder contains a systematic stream output, ut, 
and a parity stream, b1, whereas the second individual en-
coder has an interleaving of the systematic stream and a 
second parity stream, b2, thus resulting in 1/2 turbo code. 
Furthermore, trellis termination is necessary at the de-
coder to accept the first and last encoder states, mainly to 
hinder performance deterioration.

At the decoding part, two soft-input-soft-output 
(SISO) decoders represent the turbo decoder. The struc-
tures of convolutional and turbo decoders are nearly the 
same, except for some minor changes. The decoding iter-
ative scheme consists of an essential a posteriori proba-
bility (APP) decoder, interleaver, and de-interleaver [35]. 
After encoding, the entire n-bit turbo code word could be 
assembled into the frame, modulated, transmitted over 
the channel, and then decoded. Let Ui denote the mod-
ulating code bit (which could be either a systematic or 
parity bit), and Yi denote the corresponding received sig-
nal. Note that Ui can only be 0 or 1, and Yi is a soft value. 
Therefore, the input of turbo decoder can be obtained by 
the following form [34]:

where P(Yi|Ui = j) is the conditional probability of the re-
ceiving signal Yi given that the code bit Ui = j was trans-
mitted. The probabilistic expression shown in (14) is called 
a log-likelihood ratio (LLR), and it is used throughout the 
decoding process. The calculation of the LLR equation re-
quires not only a received signal sample Yi, but also some 
statistical knowledge from the channel based on the exper-
imental measurements. For instance, if BPSK modulation 
is employed over a t-distribution channel in (4), then the 
corresponding decoder input in LLR form can be expressed 
as follows:

5.2  |  Polar code

The channel polarization transformer is used to build polar 
codes [36]. Here, it is assumed that the channels or the posi-
tion of bits would undergo polarization, mainly because some 
channels are highly reliable, whereas some are not reliable for 
combining and splitting at infinite length. The channel capacity 
can be reached only if data bits are placed in reliable channels.

The task of polar code construction is to find the set of the 
most unreliable channels, which is usually called the frozen set. 
Several construction algorithms with a range of intricacies require 
the design-SNR component, mainly because the nature of polar 
codes is not universal, despite some possessing universal struc-
tures. The polarization by the kernel reflects the encoder [36].

A larger input size can be acquired with this Kronecker 
product, as it allows the possession of dual power lengths in 
the polar codes. The descriptive code N refers to n = log2(N), 
whereas the following expresses the encoding:

where F⊗n denotes the F Kronecker product at n times. As il-
lustrated in Figure 9A for code length = 4, the encoding is as 
given in (17).

(14)R(ci)= log

(
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p(yi|ci =0)

)
,

(15)R(Ui)= log

(
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)
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(17)G=F⊗n

F I G U R E  8   Turbo code structure [35]

F I G U R E  9   Polar code with a length of 4: (A) encoder and (B) 
decoder [36]
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Although belief propagation can be used to decode polar 
codes, successive cancelation (SC) is the standard decoding 
algorithm. This SC decoder may be obtained from the en-
coder directly along the probabilistic nodes. Both XOR and 
connection nodes are represented as follows. Calculations for 
LLRs a and b [35] performed by f and g nodes within the 
LLR domain are expressed as follows:

where s reflects the partial sum. This sum is obtained from 
past decoded bits to be incorporated into the present g node. 
The yield gained after applying f into an approximation is 
expressed as follows:

Figure 9B propagates the LLRs from right to left. This is 
denoted as Ls

i
 in the figure. Upon passing LLRs using correct f 

nodes, the initial bit, u1, may be directly decoded, whereas the 
g node is used to decode u2, which requires the partial sum. 
With the sole involvement of u1, the partial sum becomes 
equivalent to u1. The decoder sets the value to zero if u1 is in 
a frozen state. Next, u1 and LLRs are used for the decoding 
of u2, thus resulting in a lower u2 decoding performance. The 
decoding process halts after accessing all the nodes.

6  |   RESULTS AND DISCUSSION

This section presents the results of the UWAS simulations to 
evaluate the performance of channel coding based on OFDM 
and F-OFDM. Table  3 shows the simulation parameters 

(18)c=uG.

(19)
f(a, b)= log

(
ea+b+1

ea+eb

)

g(a, b, s) = (−1)sa+b

,

(20)f(a, b)= sign(a)sign(b)min(|a|, |b|).

F I G U R E  1 0   Comparison of F-OFDM and OFDM BER at 
nu = 3: (A) BPSK, (B) QPSK, and (C) 16PSK
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T A B L E  3   Simulation parameters for the baseline

Parameters Values

Modulation constellation (M) 2, 4, 16

Subcarriers (N) 256

Number of symbols 2000

Degree of freedom (nu) 3

Roll-off factor (α) 0.6

Filter length (L) 257

Cyclic prefix (CP) 36

Type of filters Hanning windowed sinc filters
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applied for the communication scheme. The UWAS was 
evaluated in two phases. First, the BER performance of both 
turbo and polar codes was assessed and compared in terms of 
SNR. Second, both F-OFDM and OFDM were analyzed and 
their performances were compared in terms of power spectral 
density (PSD). The results of the simulations were obtained 
from the fitting tool of MATLAB in the presence of additive 
t-distribution noise with a nu value of 3.

6.1  |  BER performance

The simulation results of BER with Eb/No are shown in 
Figure  10. The turbo code data of OFDM and F-OFDM are 
presented in pink and red, respectively. The polar code data 
of OFDM and F-OFDM are presented in black and blue, re-
spectively. The uncoded data for OFDM and F-OFDM are pre-
sented in yellow and green, respectively. The Max-Log-MAP 
and SC decoding algorithms were employed for the turbo and 
polar codes, respectively. Note that both algorithms have used 
an R rate of 1/2. Figure  10A illustrates that the performance 
yielded by the turbo code is better than that of the polar code in 
F-OFDM and OFDM by 2 dB at BER 10−3. The performance 
variance between uncoded OFDM and F-OFDM was nearly 
nonexistent, whereas a substantial variance in performance was 
observed between uncoded turbo and polar codes, that is, ap-
proximately 8 and 6 dB, respectively. According to the results 
shown in Figure 10, the performance of BER depends on the 
modulation family used and the words of constellation map-
ping. A high order of constellation reduces the performance of 
BER, as the latter is highly sensitive to the interference.

In contrast, comparing Figure  10A with Figure  11A, it 
can be observed that the BER is improved to 1.5 × 10−4 at 
7 dB approximately, and 1.02 × 10−4 at 5 dB for turbo and 
polar coding, respectively, when nu is increased. Therefore, 
the t-distribution converges to Gaussian distribution as nu 
increases. This improvement in BER is similarly observed 
when QPSK and 16 QPSK are considered.

The use of polar and turbo codes has both advantages and 
disadvantages related to the information performance, error 
correction performance, and computational complexity. 
The computational complexity of a polar decoder is lower 
than that of a turbo decoder. However, in terms of informa-
tion performance, the polar code uses low coding rates and 
long block lengths. For practical applications, such features 
should be considered when choosing the channel code.

6.2  |  Computational complexity

The parameters related to the computational complexity used 
for the turbo code are the information block length (K), the 

F I G U R E  1 1   Comparison of F-OFDM and OFDM BER at 
nu = 4: (A) BPSK, (B) QPSK, and (C) 16PSK
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memory length of the component (m), and the number of it-
erations (Imax) according to [37]. The encoded block length 
(N) is related to the polar code [36]. Equations (21) and (22) 
show the computational complexities of turbo and polar 
codes, respectively.

where K is a set varying as 32 ≤ k ≤ 1024 bits, N = k/R, 
R = 1/2 m = 10, and Imax = 8. The efficiency of the polar 
code technique was evaluated in terms of its ability in re-
ducing the computational complexity. Figure 12 shows the 
variation of the computational complexity with respect to 
the K value. By comparing both techniques, it can be ob-
served that the lowest computational complexity was re-
ported for the polar code.

6.3  |  Performance PSD

In this section, the performances of F-OFDM and OFDM 
schemes are evaluated based on the PSD. Figure 13 presents 
the differences in the PSDs resulting from the signals of 
F-OFDM and OFDM. The OOBE for turbo and polar codes 
based on OFDM was −45 dBW/Hz. However, the OOBE was 
−80.02 dBW/Hz for the turbo code and −85.56 dBW/Hz for 
the polar code after using the F-OFDM scheme. Therefore, 
F-OFDM provides better frequency localization compared 
with OFDM.

Figure  14 shows the baseband impulse response of the 
built filter. It can be observed that the main energy of the 

filters is limited to the main lobe of sin. Therefore, the energy 
of the filter remains confined to the length of the CP. The 
BER values shown in Figure 10 indicate the limited ISI.

(21)CT = Imax×16×K×2m+ Imax×8×K×2m,

(22)CP =N ⋅ log2(N),

F I G U R E  1 4   Impulse response of the designed filter for F-OFDM
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F I G U R E  1 3   Comparison of F-OFDM and OFDM PSD: (A) 
turbo code and (B) polar code
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F I G U R E  1 2   Computational complexity of the turbo and polar 
decoders
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7  |  CONCLUSION

This paper presented a new waveform F-OFDM system 
based on the UWA communication channel. The new system 
successfully suppressed the guard band, and its ISI was de-
creased by using a filter. Upon comparing the performances 
of polar and turbo codes, this study proposes polar coding 
based on the UWA channel coding scheme. The results ob-
tained from MATLAB simulations highlighted the feasi-
bility offered by polar coding based on the UWA channel 
coding scheme. This coding scheme also enhanced the rate 
of corrected data, in addition to minimizing the BER in the 
communication system effectively. As for the turbo code, its 
error rate was lower than that of the polar code. However, the 
drawbacks of the turbo code are a massive algorithm com-
plexity for decoding, a demand for an interleaver, and time 
delay. This indicates the higher efficiency of polar codes for 
underwater communication system compared with that of 
turbo codes. Regarding complexity and time delay, the turbo 
code appeared to be competitive in correcting error codes. 
Moreover, when the SNR exceeded 8 dB, the error rate in 
the system was 10−3 for BPSK and QPSK. Thus, reliable 
underwater communication can be achieved when the SNR 
exceeds 8 dB.
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