• Title/Summary/Keyword: undershoot

Search Result 72, Processing Time 0.031 seconds

Absolute and Proportional Undershoot Values as Indices of Coarticulation

  • Oh, Eun-Jin
    • Speech Sciences
    • /
    • v.12 no.1
    • /
    • pp.65-74
    • /
    • 2005
  • The aim of this paper is to suggest an index of coarticulation, proportional undershoot values, given the observation that absolute undershoot within a language tends to be proportional to target-locus difference. The target-locus proportionality predicts that a large difference between the consonant locus and the vowel target will result in a large amount of vowel undershoot, while a small difference a small amount of vowel undershoot. It turns out that the proportional undershoot is a potentially more appropriate way of comparing degree of undershoot across languages. However, even though the proportional undershoot measurement may provide a useful index comparing the overall coarticulation degree in a CV token for cross-linguistic data, it is concluded that it may potentially wrongly predict the cases of transfer or error as a progress in learning.

  • PDF

A New Sliding Mode Control for Set-point Regulation of Second Order LTI Nonminimum Phase Systems (이차 선형 시불변 비최소 위상 시스템의 설정값 조정을 위한 새로운 슬라이딩 모드 제어)

  • Lee, Ha-Joon;Park, Cheol-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.10
    • /
    • pp.990-999
    • /
    • 2007
  • We deal with second order NMP(Non-Minimum Phase) systems which are difficult to control with conventional methods because of their inherent characteristics of undershoot. In such systems, reducing the undesirable undershoot phenomenon makes the response time of the systems much longer. Moreover, it is impossible to control the magnitude of undershoot in a direct way and to predict the response time. In this paper, we propose a novel two sliding mode control scheme which is capable of determining the magnitude of undershoot and thus the response time of NMP systems a priori. To do this, we introduce two sliding lines which are in charge of control in turn. One is used to stabilize the system and achieve asymptotic regulation eventually like the conventional sliding mode methods and the other to stably control the magnitude of undershoot from the beginning of control until the state meets the first sliding line. This control scheme will be proved to have an asymptotic regulation property. The computer simulation shows that the proposed control scheme is very effective and suitable for controlling the second order NMP system because it can decide the magnitude of undershoot in a direct and stable way and reduce the response time compared with the conventional ones.

On the Undershoot Compensation in MIMO Systems with Nonminimum Phase Zeros

  • Lee, Sang-Yong;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.30-35
    • /
    • 2003
  • In the control system analysis and synthesis, the nonminimum phase system has some difficulties due to the undershoot behaviour and the constrained sensitivity function. SISO problems has been widely investigated in the literatures, and it is well known that the undershoot cannot be eliminated by any linear feedback control. However, the undershoot compensation in MIMO system is less studied, and this paper is to deal with the zero property and the nonminimum phase behaviour of the MIMO system. Firstly, some definitions of the zeros will be introduced. Second, some systems including nonminimum phase transmission zeros are exemplified to show that the undershoot behaviour could be eliminated by a linear feedback in MIMO systems.

  • PDF

Improvement of Transient Step Response Using Feedforward Compensator in Nonminimum Phase Systems

  • Kwon, Byung-Moon;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.3
    • /
    • pp.152-158
    • /
    • 2001
  • This paper proposes a simple feedforward compensator in order to decrease the amount of undershoots and overshoots on the step response in nonminimum phase systems. The compensator makes the step type input be a ramp input with saturation for 0$\leq$t<${\alpha}$. It is shown in this paper that the compensated system has small amount of undershoot and overshoot at the price of rise time compared to the system without compensator. Also, provided the system is properly stable, the influence of the design parameter ${\alpha}$ on the step response of the nonminimum phase system is investigated in the case of Type A, and Type B undershoot, which gives a guideline for the compensator design.

  • PDF

Transient Response Analysis and Compensation of the Second Order System with OIne PHP Real Zero

  • Byung-Moon kwon;Ryu, Hee-Seb;Kwon, Oh-Jyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.262-267
    • /
    • 2000
  • In this paper, the magnitude of undershoot and overshoot in a prototype second order system with one positive real zero is computed by the analytic methods. Also, it will be shown that the peak times of the undershoot and overshoot can be calculated using the impulse and step response of the second order system. Three different cases are investigated: underdamped(p<ζ<1), critically damped(ζ=1) and overdamped(ζ>1) cases. We deal with the undamped(ζ=0) case as a special case of the underdamped. And a compensation method is proposed to reduce undershoots of the nonmininmun phase system using feedforward compensator.

  • PDF

Speech Rate and the Acoustic Features of Korean Segments (발화속도와 한국어 분절음의 음향학적 특성)

  • 이숙향;고현주
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.162-172
    • /
    • 2004
  • This study investigates the following three things through a production experiment and acoustic analysis: 1) relationship between speech rate and the segment duration in Korean, 2) relationship between speech rate and spectral characteristics of vowels, i. e. undershoot, and 3) correlation between the vowel duration and undershoot. The results showed that the faster the speech rate nab, the shorter the duration of syllables and segments was. A few speakers were affected by speech rate in the durational ratios between closure and aspiration in a stop and between Towel and consonant in a syllable. Closure duration and vowel duration were more affected compared to aspiration and consonant duration, respectively. Speakers showed some differences in the extent to which speech rate affected vowel undershoot, implying that speakers used different production mechanisms for spectral characteristics of vowels: Some speakers speeded up movement of articulatory organs according to speech rate increase while some kept it constant regardless of speech rate change.

LDO Regulator with Improved Transient Response Characteristics and Feedback Voltage Detection Structure (Feedback Voltage Detection 구조 및 향상된 과도응답 특성을 갖는 LDO regulator)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.313-318
    • /
    • 2022
  • The feedback voltage detection structure is proposed to alleviate overshoot and undershoot caused by the removal of the existing external output capacitor. Conventional LDO regulators suffer from overshoot and undershoot caused by imbalances in the power supply voltage. Therefore, the proposed LDO is designed to have a more improved transient response to form a new control path while maintaining only the feedback path of the conventional LDO regulator. A new control path detects overshoot and undershoot events in the output stage. Accordingly, the operation speed of the pass element is improved by charging and discharging the current of the gate node of the pass element. LDO regulators with feedback voltage sensing architecture operate over an input voltage range of 3.3V to 4.5V and have a load current of up to 200mA at an output voltage of 3V. According to the simulation result, when the load current is 200mA, it is 73mV under the undershoot condition and 61mV under the overshoot condition.

Nonlinear Filter-based Adaptive Shoot Elimination Method (비선형 필터 기반의 적응적 슈트제거 방법)

  • Cho, Jin-Soo;Bae, Jong-Woo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.2
    • /
    • pp.18-25
    • /
    • 2008
  • The current display systems including TVs are going digital and large-sized, and high visual quality of those systems becomes a very important selling point in the current display system market. Thus, various researches have been carried out for enhancing the visual quality of digital display systems. One of the important digital image(or video) enhancement techniques is sharpness enhancement, and it is generally based on a transient improvement technique that reduces the edge transition time. However, this technique often generates overshoot and undershoot, which cause undesirable pixel-level changes around the transient improved edge. In this paper, we propose a new nonlinear filter-based adaptive shoot elimination method for effectively suppressing the overshoot and undershoot that occur in the transient improvement, so that we can obtain visually sharper and clearer digital images(or videos). The proposed method uses two orthogonal directional min/max nonlinear filters with an adaptive shoot elimination scheme in order to effectively suppress the visually sensitive overshoot and undershoot. Experimental results show that the proposed method suppresses the overshoot and undershoot almost perfectly while maintaining the effect of the transient improvement. The applications of the proposed method include digital TVs, digital monitors, digital cameras/camcoders, portable media players(PMP), etc.

A Study on Integral Equalities Related to a Laplace Transformable Function and its Applications

  • Kwon, Byung-Moon;Ryu, Hee-Seob;Kwon, Oh-Kyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.76-82
    • /
    • 2003
  • This paper establishes some integral equalities formulated by zeros located in the convergence region of a Laplace transformable function. Using the definition of the Laplace transform, it shows that Laplace transformable functions have to satisfy the integral equalities in the time-domain, which can be applied to the understanding of the fundamental limitations on the control system represented by the transfer function. In the unity-feedback control scheme, another integral equality is derived on the output response of the system with open-loop poles located in the convergence region of the output function. From these integral equalities, two sufficient conditions related to undershoot and overshoot phenomena in the step response, respectively, are investigated.

Dynamic Characteristics of DC-DC Converters Using Digital Filters

  • Kurokawa, Fujio;Okamatsu, Masashi;Ishibashi, Taku;Nishida, Yasuyuki
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.430-437
    • /
    • 2009
  • This paper presents the dynamic characteristics of buck and buck-boost dc-dc converters with digital filters. At first, the PID, the minimum phase FIR filter and the IIR filter controls are discussed in the buck dc-dc converter. Comparisons of the dynamic characteristics between the buck and buck-boost converters are then discussed. As a result, it is clarified that the superior dynamic characteristics are realized in the IIR filter method. In the buck converter, the undershoot is less than 2% and the transient time is less than 0.4ms. On the other hand, in the buck-boost converter, the undershoot is about 3%. However, the transient time is approximately over 4ms because the output capacitance is too large to suppress the output voltage ripple in this type of converter.