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Improvement of Transient Step Response Using Feedforward

Compensator in Nonminimum Phase Systems

Byung-Moon Kwon, Hee-Seob Ryu, and Oh-Kyu Kwon

Abstract: This paper proposes a simple feedforward compensator in order to decrease the amount of undershoots and overshoots on
the step response in nonminimum phase systems. This compensator makes the step type input be a ramp input with saturation for
0 <t < «. Tt is shown in this paper that the compensated system has small amount of undershoot and overshoot at the price of rise
time compared to the system without compensator. Also, provided the system is properly stable, the influence of the design parameter
« on the step response of the nonminimum phase system is investigated in the case of Type A, and Type B undershoot, which gives a

guideline for the compensator design.
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L Introduction

In most industrial control plants, it is difficult to track a
rapidly varying reference input like a step change. Also the
step type input usually generates a bad transient response char-
acteristic of the plant, and it may result in a violation of the
constraints which can cause the unstability of the system[1]{2].
However, if the reference input is changed smoothly unlike the
rapidly varying reference input, the transient response can be
improved[2][3]. The vibration of flexible structures can also
be greatly reduced by using smoothly varying reference input
which generated by input shaper{4][5]. The type of smooth
varying reference trajectory is often used in servo systems, e.g.,
industrial robots[3].

Reference models are used in many control problems for
improvement of transient response characteristics, e.g., over-
shoots, saturation, etc. They provide desired trajectories that
the plant should follow. Hence the plant is to track the output
of reference model not the reference input[2]. Amount of un-
dershoots and overshoots also can be reduced by tracking the
smooth reference model output not the rapidly varying refer-
ence input. Hence the reference models are very important in
the model reference control, but it would be a big problem to
select the proper reference model for a given plantf1}[2][3].

In this paper, instead of using a reference model, a simple
feedforward compensator is to be proposed, which makes the
step type input be a ramp input with saturation for 0 < ¢ < a.
The reference input generated by the proposed compensator can
improve the transient response like undershoots, overshoots and
settling time. But it is noted that the compensator does not af-
fect the stability of the system because it is of feedforward type
and its output is smaller than the step reference input. Using this
compensator, it will be shown that the compensated system has
small amount of undershoots and overshoots at the price of rise
time. But the settling time of the system may be shortened by
the compensator. Also, assuming the system is properly stable,
the influence of the design parameter « on the step response of
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the compensated system will be investigated in the case of Type
A and Type B undershoot, which gives a guideline for the com-
pensator design.

The layout of this paper is organized as follows: In Section
2, the type of undershoots will be defined for preliminaries. In
Section 3, a simple feedforward compensator is to be proposed
which decreases amount of undershoots and overshoots at the
price of rise time. And the effects of changing « in the com-
pensator are also analyzed. In Section 4, performances of the
proposed compensator are exemplified via computer simulation
to show that the ramp input with saturation 0 < ¢ < o can im-
proves the transient response compared to the step changes in
the reference input. The concluding remarks are given in Sec-
tion 5.

II. Preliminaries

In this paper, we consider an SISO(single-input, single-
output) system with RHP(right half plane) zeros. Let us in-
troduce the classification of the undershoot which is caused by
RHP zeros[6][7].

Definition 1: Let y(¢£)(t > 0) be a sufficiently smooth
scalar time response of a dynamical system and assume that
y(0) = 0 and the following conditions:

a) There is a finite positive integer 7 that satisfies

d"y(t)
y(04) = = —2s =0, (D
dgn=1 t=04
and
d"y(t
vol - so @)
“T =0y

b) The steady-state value of y(t) exists and is not zero, i.e.,
y(oo) = lim y(t) # 0. €)
Then y(t) is said to have a Type A undershoot if
Y (04)y(o0) < 0. @

If Eq. (4) is not true, and there is an open interval (a, b) such
that

y(Hy(oc) <0, YVt e (a,b), ()



Transactions on Control, Automation and Systems Engineering Vol. 3, No. 3, September, 2001 153

A response having
type A underhoot
\v4

A response having
type B underhoot

v

Fig. 1. Classification of the undershoot.

then y(t) is said to have a Type B undershoot.

The undershoot type is shown in Fig. 1 when the steady-state
value is positive. Many papers have discussed such phenomena
in SISO systems and have shown that the Type A undershoot
occurs if and only if the number of the zeros having positive
real parts is odd[6]{7][8].

As a matter of fact, it has been realized that the nonmin-
imum phase system, compare to the minimum phase system,
has more various fundamental limitations imposed by RHP ze-
ros[9][10][11]. One of these limitations is the step response ex-
trema including undershoot and overshoot phenomena. In this
paper, the reference input is restricted to the step function since
the problem is not severe to the ramp or parabolic input. Fur-
thermore we assume that the system G(s) in Fig. 2 is stable and
has a positive steady-state value, i.e., the feedback controller
K (s) has been already designed in order to guarantee the sta-
bility.

111 Design of feedforward compensator
In this chapter, we will propose a feedforward compensator

in order to improve the transient response of the system. The
main idea is that small input gives rise to small amount of un-
dershoots and overshoots at the price of rise time.

Let us consider the feedforward compensator C(s) as fol-
lows:

11 ~as
Cls) = == (1= e, ©

where « is a positive real value which is selected by designer.
It is noted that this compensator has only one zero at oo and
one pole at —oco. It also has similar properties to low pass filter
in frequency domain. According to the value of «, the proposed
compensator makes the step type input be a ramp input with sat-
uration for 0 < t < « as shown in Fig. 3. When a step type
function is applied to this compensator, its output has the shape

5L o) PR Pls) e

Fig. 2. Feedback system with feedforward compensator.
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Fig. 4. Definition of parameters in the system with Type A un-
dershoot.

of Fig. 3. We will investigate the characteristic of this compen-
sator concentrated on the transient response characteristic of the
nonminimum phase system to the step type reference input.

In the system with Type A undershoot, let Yy, tp, Ymo and
tm be the peak undershoot, the peak undershoot time, the max-
imum overshoot and the maximum overshoot time of the step
response for the system without the compensator (6), respec-
tively. And let Y, tpc, Yme and ¢, be the peak undershoot,
the peak undershoot time, the maximum overshoot and the max-
imum overshoot time of the step response for the compensated
system, respectively. Also let us define ¢,(> 0) as a time point
such that the step response crosses over the zero level, and de-
fine M as the area of step response from O to ¢,, which can be
written by

M = /0 C[—y(0)) dt. &)

The graphical representation of these parameters is given by
Fig. 4. The compensating effects of the feedforward com-
pensator depend on the design parameter «, which are demon-
strated in Theorem I1hs follows:

Theorem 1: Effects of adjusting « in the compensator (6)
on the system with Type A undershoot are as follows:

In the case of undershoot:
I. Fora =20,

tpc = tp s (8)

Yo = You . )
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2. ForO< a<t,,

max [o, tp] < tpe < min[t.,t, + af , (10)
1 [a?
o [ ol < ¥l < il an
a Jo
3. Fort, < a,
tpC =1,. (12)
1 [t
Yol = 5 [T Fwoldt < ¥l 13
@ Jo
In the case of overshoot:
. Fora =0,
tme = tm , (14)
Yime = Ymo - (15)
2. For0 < a,
tm<tmc<tm+a, (16)
Yie < Yo - amn

Proof: The unit step response of the system G(s) with the
feedforward compensator is given as follows:

Ves) = =2 (1=

e )Y (s). (18)
At first, if the design parameter & = 0, it can be seen that
Y.(s) = Y (s), and so Egs. (8), (9), (14) and (15) are holding.
The Ypc, tpe, Yme and ¢y, can be derived from the derivative
of the response Y. (s), which can be written by

sYo(s) = é (1—e ) ¥(s). (19)
Eq. (19) gives the time-domain expression as follows:

Be(t) = = O1D) — gt - Lt - )], @0

where 1(2) is the unit step function as follows:

0, fort <0,
= ’ ’ 21
1(t) { 1, fort > 0. b

According to the time periods, it is also rewritten as follows:

—y(t) for0 <t < a,
y'c(t) = (22)
[y(t) —y(t—a)], fort>a.

The peak undershoot time #p. and the maximum overshoot time
tme become the first and second time points that y.(¢) =

in transient response to the step input, respectively. For 0 <
t < «, it can be seen that the maximum overshoot time .
does not appear since there is no second time point such that
¥e(t) = 0. In the case of undershoot, if the design parameter o
is smaller than t., the peak undershoot time ¢, does not appear
since g.(t) is not zero in this time period. And if the design

naramatar n ic armial ta ar laraar than + tha neal nindarchnat
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Fig. 5. Compensated system analysis in the case of a > ¢..

time t,. always becomes ¢ since .(¢t) = O attime t = ¢..

For t > «, it can be also seen that if @ < ¢., then ¢,
and ¢ are given as the first and second time points such that
y(t) = y(t — ), respectively, and that if & > ¢, then t,. does
not appear and &, is the time point such that y(t) = y(t — a).
Hence the peak undershoot time ¢, always appears between £,,
and ¢, and the maximum overshoot time ¢, is always between
tm and t,, + «. Thus, the peak undershoot time £, can be writ-
ten by Egs. (10) and (12), and the maximum overshoot time
tme can be also written by Eq. (16). It is shown that |Yp.| and
Yo are always smaller than |Y},,,| and Y,,,,, respectively, since
the output of feedforward compensator is smaller than step in-
put. For 0 < ¢t < a, the compensated step response y.(t) is
given by 1/« times of integral of y(¢). Using the peak under-
shoot time tp., Yy is also written by Egs. (11) and (13), which
completes the proof. |

Theorem 1 can be used to analysis of the compensated sys-
tem. For a given step response of the system with Type A under-
shoot, the step response of the system with feedforward com-
pensator can be predicted using the Theorem 1. For instance,
Fig. 5 shows in the case of @ > t, that Y, and Yy, are smaller
than Y}, and Yi,, respectively. Also, ¢, is equal to ¢. since
a > t,, and . is the time point that y(¢) = y(t — ).

In addition to Theorem 1, it is useful result that the area M
has the bounds as follows:

Theorem 2: Let us define y(t) as the step response of the
system with Type A undershoot and at least one RHP real zero
at s = z1. Then the area of undershoot has the lower bound as
follows:

[/: y(t)dt + y(oo)} “Ebs o A

23
</f y(t)dt + y(oo) e o1t ta) &
ts

with

M:/ﬂwmw, 4)

0
where ¢,(> 0) is a time point such that y(¢) crosses over the
zero level, ¢ is a minimum time point such that y(¢) has a zero
steady-state error from ¢ = t; to ¢ = +oo, and y(oo) is a
steady-state value of the system.
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Proof: It is clear that the Laplace transform of y(t) has the
open RHP as its region of convergence, and is explicitly written
by

S

Gls) /w e y(t)dt, 25)
Q

where G(s) is the system with one RHP real zero at s = 2.
The zero z; is obviously in the convergence region of Eq. (25).
Consequently, after evaluation Eq. (25) at ¢ = z; we have that

/ e‘zlty(t)dt

0, .

/ e_zlty(t)dt+/ e Py (t)de
t

0 b
+/ e try(t)dt (26)

ty

te b
/ efllty(t)dt#—/ ety (t)dt
t

J0

0

I

Il

+y(OO) elets
21

3

since y(t) = y(oc) for ts < ¢. Now from Eq. (26) it follows
that

mos et Ly dt

o}
ts P

/ e’zlty(t)dt+ y(zolo) e—z;tﬁ- (27)
ta

U; ytydt + VO] =t

Z1

\

since e 71" < 1for0 <t < t; and e %t < e *1! for
t. <t <t,. Furthermore, the upper bound of M can be shown
by

ot
et < / e [y(r)) dt
0

t
/ ey (tydt + —y(;lo)e“z”“ (28)
iy

il

oty
< e‘”tz/ y(t)dt+—y(oo)e‘2””,
t 21

1

since e *1tr < e "t for) < t < t,and e ' < et for
t. <t < t,, which completes the proof. |

It is noted that Theorem 2 is holding for compensated step
response y.(t) since C'(s)G(s)/s =0at s = 2.

In the system with Type B undershoot, let Yrpu, trp, Ypu and
t, be the reverse peak undershoot, the reverse peak undershoot
time, the peak undershoot and the peak undershoot time of the
step response for the system without the compensator (6), re-
spectively. And let Yo pc. trpe, Ype and £, be the reverse peak
undershoot, the reverse peak undershoot time, the peak under-
shoot and the peak overshoot time of the step response for the
system with the compensator, respectively. Also, let us define
t, and ¢,, as a time point such that the step response firstly
and secondly crosses over the zero level, respectively, and de-
fine Ay and A1 as the area of step response from 0 to ¢, and
from ¢, to t.,, respectively, as follows:

tz
My = / "yt (29)
0

and

by
M, = / [—y()] dt. (30)
tos

b T
PR A,

£
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Fig. 6. Definition of parameters on system with Type B under-
shoot.

The graphical representation of these parameters is given by
Fig. 6. Let us define ¢; as the value of « such that y(t) =
y(t — a) for t,, < a < tm,. Then, similarly to the system with
Type A undershoot, compensating effects of the feedforward
compensator on the system with Type B undershoot by adjust-
ing the design parameter « are given in Theorem 3 as follows:

Theorem 3: Effects of adjusting « in the compensator (6)
on the system with Type B undershoot are as follows:

In the case of undershoot:

1. Fora =0,
trpc = trp 5 (31)
erc = Yyrpu s (32)
toe = tp, (33)
Yoe = You . (34)
2. For0<oa<t,,
max [a, trp] < trpe < min [tz trp +a , (35)
1 [23
- / y(t)dt < Yipe < Yopu, (36)
@ Jo
max [ty trp + a] < tpe < tp +a, (37
Yoel < [Ypul - (38)

3. Fort,, <o <t.,,

trp(; = tzl . (39)

1 [t=
}/rpc = — / y(t)dt < eru , (40)
@ Jo

min [t21 +a t22] < tpe < max[t;, + «, tZQ] > “4n
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Yoel < [Ypul . (42)

4. Fort,, <a <t
the t,pc and Y. are same as the case of IlIBut ¢, and Yy are
given by

tpc = tzz 3 (43)
1] [tee
Yye| = & / y()dt] < Yyl (a4)
@ |Jg
or
tpe = tey (45)
1] [tz
Youl < Yoel < - / y(t)dt] . (46)
0

where t., is a second time point such that y(t) = y(t — ).

5. Fora =t,,
it is the same as the case of IIkxcept there exists inflection point
at time ;.

6. Fort; < a,
tTpC - tzl ) (47)
1 [t
Yipe = —/ y(t)dt < Yepu , (48)
@ Jo
lpe = Lzs s (49)
1 tzp
ool = 2| [ w0t < 1Vl s0)
Jo

In the case of overshoot:

This is the same as the case of overshoot in Theorem 1.

Proof: The proof of this theorem is similar to that of The-
orem 1. But in the system with Type B undershoot, y.(t) can
have two extrema except two undershoots and overshoot as the
case of 4. Also, as the case of 5, y.(t) may have one inflec-
tion point according to set of « = ¢;. These phenomena arise
from selected a for nearby value between t., and ¢;, and so
there exist two or one time points such that y(t) = y(t — «) for
tay <o <tm.

This theorem can also be used to analysis of the compensated
system with Type B undershoot as the Theorem 1. From Eq.
(50), it seems that we can make Y}, for positive value if M; >
M3, i.e., it seems that undershoot phenomena will not appear in
this case, and so y.(t) is nonnegative. But for the system with
Type B undershoot and at least one RHP real zero, Mz is always
larger than M.

Theorem 4: Let us define y(¢) as the step response of the
system with Type B undershoot and at least one RHP real zero.
Then the areas of the undershoot have the following relation:

[ uwa< [ "y, 1)

21

where ., and t., is a time point such that y(¢) firstly and sec-
ondlv crosses over the zero level. resnectivelv.

Proof: Let z; be one of the RHP real zero of the system.
Similarly to Eq. (26), we can get the following relation:

e 1y (t)dt
ft. o0 (52)
2 —z1t —z1t
/ e Fy(t)dt +/ e ry(t)de,
0 t

2

0

and so it is satisfied the inequality as follows:

ty
/ P e nty(t)dt < 0. (53)
0

Also we can obtain the lower bound for the areas of the under-
shoot as follows:

£ t
g F1ta / ' y(t)dt < / ' e Fhy(t)dt (54)
0 0

and

t2g tay
e " / y(t)dt </ e y(t)dt, (55)
tzl tzl .
since e7*1t1 < o7t y(t) > Ofor 0 < t < t,, and
e 1t > em R y(t) < Ofort,, <t < t.,, respectively.
Hence the summation of Egs. (54) and (55) is written by

—2qt, f=1 tx2 2 e
e 1 y(t)dt + / y(t)dt| < e “My(t)dt,
0 Jt. 0

) (56)

and so, the result follows from Eq. (53) since etz > 0,
which completes the proof. ]

From Theorem 1 and 3, it can seen that the peak undershoot
Y, and the peak undershoot time #,. of the compensated sys-
tem are determined by M (or M, and M>), t; (ort,, and t.,)
and <. To make it short, if the design parameter « is too large,
then peak undershoot and maximum overshoot are very small at
the price of rise time and vice versa. Thus, from the advanced
information about the step response of the system without com-
pensator, we can properly select the value of a.

Iv. Simulation
In this chapter, the systems with Type A undershoot and Type

B undershoot are taken for computer simulations to exemplify
the results proposed.
1. System with type A undershoot

Let us take the system G, (s) with Type A undershoot for
numerical example as follows:

Ki(s+0.8)(s - 1)
(s+2)(s+25+7)(s+25—74)(s+3)

Gi(s) = Y
where K7 = —54.375 for the unity DC gain. It is noted that
G1(s) has large Type A undershoot and overshoot because of
one real RHP zero and LHP(left half plane) zero located be-
tween dominant pole and imaginary axis, respectively. The
step response of the G1(s) is shown by the solid curve on Fig.
7. Tt has the following specifications: The peak undershoot is
Ypu =~ —1.01 at the peak undershoot time ¢, ~ 0.46 sec, the
maximum overshoot is Yy, ~ 1.33 at the maximum overshoot
time ¢,, ~ 2.03 sec, and zero crossing time ¢, ~ 0.96 sec.
Using the feedforward compensator (6), Theorem 1 can be
aoplied to analvze effects for the changing «. The compensated
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Fig. 8. Effects of « in the feedforward compensator for G2 (s).

step response according to the value of « is given by Fig. 7.
It is shown that the amount of undershoot and overshoot is as
decrease as increase the value of «. It is noted that the peak
undershoot time £, is not larger than ¢, even if « is very large.
Let us investigate when o = 1.5. In this case, the step response
of the G1(s) with compensator (6) is shown by the dashed
curve on Fig. 7. It has the peak undershoot Y,. ~ —0.38
at the peak undershoot time t,. = t, ~ 0.96sec, and has
the maximum overshoot Yn. =~ 1.125 at the maximum over-
shoot time ¢,,. =~ 3.04sec. The ty,. is same as the time that
y(t) = y(t + 1.5) for t > t; =~ 0.96 sec. The absolute magni-
tude of the peak undershoot and maximum overshoot is reduced
about 62.4% and 15.4%, respectively, which exemplifies the ef-
fect of the compensator proposed.
2. System with type B undershoot

Let us consider the system G2 (s) with Type B undershoot as
follows:

_ Ko(s+2+5)(s+2— s~ 1)
T3+ 2(s+25+5)(s+25-35)(s+3)

Ga(s) (58)
where K> = 10.875 for the unity DC gain. This system has
Type B undershoot and overshoot because of two (complex)
RHP zero and LHP zero located between dominant pole and
imaginary axis, respectively. The step response of the Ga(s)
without compensator is shown by the solid curve on Fig. 8§,
which has the following specifications: The reverse peak un-
dershoot Yrp. = 0.53 at the reverse peak undershoot time
trp =~ 0.12sec, the peak undershoot Y,, ~ ~—0.66 at the
peak undershoot time ¢, ~ 0.62sec, the maximum overshoot
Yo =~ 1.29 at the maximum overshoot time ¢,, ~ 2.17 sec,

and zero crossing times {;, ~ 0.30sec and ¢, ~ 1.04sec.
In this system, the inflection point is appeared when f; =
a ~ 1.18sec, and so two extra extrema points is occurred for
te, ~ 1.04sec < a < t; =~ 1.18sec.

Theorem 3 can be applied to analyze effects for changing «
to use the feedforward compensator (6). The compensated step
response according to « is given by Fig. 8. For example, if
« = 1.5, it has the reverse peak undershoot Y,,. ~ 0.07 at
the reverse peak undershoot time t,,c = ., ~ 0.30sec, the
peak undershoot Y,. ~ —0.14 at the peak undershoot time
tpe = tz, = 1.04sec, the maximum overshoot Y, =~ 1.22
at the maximum overshoot time ¢, ~ 3.18sec. The abso-
lute magnitude of the reverse peak undershoot, peak undershoot
and maximum overshoot is reduced about 86.79%, 78.79% and
5.43%, respectively, compare to those of step response for the
system without compensator.

V. Gonclusions
In this paper, a simple feedforward compensator is proposed.

Provided that the nonminimum phase system is properly stable,
Theorem 1 and 3 have shown compensation effects according
to changing of the design parameter ¢ in the feedforward com-
pensator (6). And it is shown that the step response of the com-
pensated system is improved in the peak undershoot and max-
imum overshoot at the price of rise time. And, the usefulness
of the feedforward compensator is shown via some numerical
examples applied to two system which has Type A and Type B
undershoot, respectively. It is noted that the feedforward com-
pensator proposed has more effects on the undershoot than that
on the overshoot. Although the amount of undershoots can be
lessened by the proposed compensator, it is impossible to elim-
inate the undershoot phenomena, which still remains an open
problem.
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