• Title/Summary/Keyword: underground transmission system

Search Result 182, Processing Time 0.03 seconds

A Protection Method with single-bonding system in EHV Underground Transmission Line (초고압 지중 케이블 시스템에 대한 편단접지시의 보호대책)

  • Kim, J.W.;Kang, D.H.;Park, K.R.;Kim, Y.B.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1620-1622
    • /
    • 1998
  • The failure occurs in the system of the underground transmission line, the time of restoration is very long, the damage from stopping power supply is very serious and the cost of restoration is very great. because of these problems, the system and equipment must be protected from every electrical failure by installing protection unit. This study is summarized and compared the effects of configuration method of cable protection device with respect to surges in EHV (Extra High Voltage) underground transmission system.

  • PDF

The Prospects for Underground Transmission System in Korea (특고압 및 초고압 지중송전계통의 장래성 제1부)

  • 이재숙
    • 전기의세계
    • /
    • v.20 no.4
    • /
    • pp.31-36
    • /
    • 1971
  • This is intending to introducdine the pipe type 161KV underground cable system in Capital City of Seoul which will be constructed in 1972 or 1973 by Korea Electric Co using the AID loan and Won currency. In order to make readers to have an easy understanding and a clear view of underground cable transmission line, the first part will be for the introduction of the description on future underground cable system by Mr. E.H.F inch appeared on 1969 Sept. Consulatant Engineer. the second part will introduce our 161KV underground cable system in Seoul and it's feasibility study, and the third part will mention calculation methods of electrical properties of pipe type cable and the results of calculation of our own system.

  • PDF

Mobile Underground High-capacity 3D Spatial Information Tiling Transfer Protocol Development (모바일 지하 대용량 3D 공간정보 타일링 전송 프로토콜 개발)

  • Lee, Tae Hyung;Jo, Won Je;Kim, Hyun Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.491-496
    • /
    • 2021
  • In line with the modern era in which the safety of underground facilities and the use of underground information are increasingly emphasized, the state is pushing for more precise and accurate underground spatial information to be secured and utilized. Therefore, we need to pay more attention to subsurface geospatial data. In the future, the Ministry of Land, Infrastructure and Transport will actively utilize the 15 types of Integrated Underground Geospatial Information Map(6 types of underground facilities, 6 types of underground structures, 3 types of ground) that the Ministry of Land, Infrastructure and Transport is building as three-dimensional underground spatial information, and contribute greatly to improving national safety and convenience in underground construction. expected to do However, when a site manager requests an Integrated Underground Geospatial Information Map with a mobile device, if the large-capacity integrated underground space map is not quickly transmitted over the wireless section and is not serviced, it causes inconvenience to the site manager and delays work. In this paper, the goal of this paper is to enable field managers to quickly receive a tiled Integrated Underground Geospatial Information Map with minimal information exchange. Therefore, the tiling system is configured according to the dataset for high-speed Mobile Integrated Underground Geospatial Information Map transmission. In addition, a transmission system for the Mobile Integrated Underground Geospatial Information Map is established, and a TCP/IP (Transmission Control Protocol/Internet Protocol)-based spatial information tiling transmission protocol dedicated to the on-site Integrated Underground Geospatial Information Map is developed.

Conceptual Design and Application of HTS Power Transmission Cable (고온초전도 전력케이블 설계 및 계통적용)

  • 조전욱;성기철;김해종;이언용;류강식;박종수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.129-133
    • /
    • 1999
  • In recent years, there is a growing needs for large capacity underground power transmission lines with the increasing demand of electric power in the urban area, where various environmental limitations are imposed on the overhead transmission lines. But it is difficult to get the space for the underground power transmission cables because of complicated distributions of underground public facilties such as subway, water pipes, gas etc. As the superconducting power cables have the large power transmission capacity, the high power transmission capacity, the high power transmission density, and low loss characteristics in comparison with a conventional cable, it would be a solution to meet the increased power demand. In this paper, the results of the conceptual design and analysis of power system of HTS power transmission cable is described.

  • PDF

The Effects of Common Ground according to Fault Conditions in The Underground Transmission and Distribution System (고장조건에 따른 지중송배전계통에서 공통접지의 영향 분석)

  • Lim, Kwang-Sik;Lee, Jong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.285-287
    • /
    • 2007
  • This paper describes that the effect on the other system is generated by the single line to ground fault of the underground transmission systems and distribution systems established the common ground in trefoil. Each system is modeled by EMTP/ATPDraw and the system carry out simulations according to the various values of common ground to analyse. In this study, the result of analysis based on simulation suggests protection method and ground system of each system.

  • PDF

Analysis of Switching Overvoltage in 345kV Underground and Combined Transmission Systems (345kV 지중 및 혼합 송전계통에서의 개폐 과전압 해석)

  • 정채균;이종범;강지원
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.713-721
    • /
    • 2003
  • This paper analyzes the switching overvoltage occurred on 345kV underground power cable system as well as combined transmission system using EMTP. Cable length and closing time, preinsertion resistance have effect on switching overvoltage. Therefore, this paper analyzes the switching overvoltage occurred on conductor and sheath with change of those parameters. Specially, the cross bonding position becomes discontinuity point because of the difference between surge impedance of metal sheath and that of lead cable. Thus, the transmission and the reflection of traveling wave complexly occur at this connection point. According to these influences, voltage between sheath and earth as well as voltage between joint boxes rise. Time to crest point of switching overvoltage is longer than lightning overvoltage. Even though the voltage induced by switching surge is smaller than lightning surge, that voltage may have serious effect on the metal sheath. Therefore, this paper also analyses the reduction effect of switching overvoltage when the preinsertion resistance of circuit breaker is considered.

Analysis of Lightning Overvoltage on the Underground Power Cable at the Striking of Lightning Surge to the Combined Transmission Line (혼합송전선로에 뇌서지침입시 지중송전선로에서의 뇌과전압 해석)

  • Kim, Nam-Yeol;Lee, Jong-Beom;Jang, Seong-Hwan;Gang, Ji-Won
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.10
    • /
    • pp.502-509
    • /
    • 2002
  • In the analysis of lightning surges, transmission towers are usually simulated by ATPDraw. The modeling of transmission towers is an essential part of the traveling wave analysis of lightning surges in transmission lines. The tower model is applied to the 154kV transmission tower of which surge performance characteristics are measured Tower surge response is computed using nonuniform, single-phase line models for both transmission tower and ground wire. The overvoltage will effect to the underground transmission line. The underground cable is combined by duct and trefoil type, and the each arrester is placed on the leading-in tube and outgoing tube. This paper analyzed the effect of lightning overvoltage on the underground cable system.

A Study on SVL Transient Characteristics by Switching Overvoltage at Single Point Bonding Section in Underground Transmission Cables (개폐과전압 발생시 지중송전선로 편단접지 구간에서 SVL에 미치는 과도특성에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.764-769
    • /
    • 2014
  • This paper describes sheath voltage limiter(SVL) transient characteristics by switching overvoltage considering single point bonding in underground transmission cables. The crossbonding system is generally used for grounding methods of underground transmission system. However, the single point bonding system is used in selective area which is difficult to consist of crossbonding major section. The sheath voltage limiters are connected between joints in the single point bonding. Specially, the high overvoltage might be generated in that section as well as the aging of sheath voltage limiter might be progressed by various electrical stress including lightning overvoltage, switching overvoltage and power frequency overvoltage. Therefore, in this paper, the switching overvoltage characteristics in underground cables are firstly analysed using EMTP simulation. Then, the switching overvoltage of sheath voltage limiter is also studied in single point bonding. Finally, the reduction method of sheath voltage limiter switching overvoltage is proposed by various simulation studies including circuit breaker operating order.

Collecting Travel Time Data of Mine Equipments in an Underground Mine using Reverse RFID Systems (Reverse RFID 시스템을 이용한 지하광산에서의 장비 이동시간 측정)

  • Jung, Jihoo;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.253-265
    • /
    • 2016
  • In this study, travel time data collection of mine equipments was conducted in an underground mine using a reverse Radio Frequency IDentification (RFID) system. In the reverse RFID system, RFID readers and antennas are mounted on mine equipments, and RFID tags are attached to the underground mine gallery. Indoor experiments were performed to analyze how RFID reader transmission power levels affect tag readable area and tag recognition rates. The results showed that travel time measurement become precise when the reader transmission power was reduced, however tag recognition rates were reduced. The field experiments indicated that setting the reader transmission power to 28 dBm maintained the tag recognition rate while minimizing the tracking location error. In addition, the results revealed that the reverse RFID system can be used successfully in an underground mine to collect the travel time data of haulage trucks.

Analysis and Improvement of Shielding Effect of Electromagnetic Field in Extremely Low Frequency System (극저주파 시스템에서 전자장 차폐효과 해석 및 개선 방안)

  • Kim, Sang-Hon;Choi, Hong-Soon;Park, Il-Han
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.978-979
    • /
    • 2006
  • Recently, Peoples are exposed the ELF(Extremely Low Frequency) magnetic fields in the vicinity of underground transmission lines, and there are the generally accepted opinion that the magnetic fields affect the human body and there are possibility of the disease. Also in relation to this problem, technical solution methods and research are advanced for reducing the magnetic fields. In this paper, to practically understand the magnetic fields underground transmission lines, We analyze the electromagnetic field distribution in the underground transmission lines by means of FEM(Finite Element Methods) and present that improvement of the effective shielding methods by applying cable arrangements and shielding materials, eddy current problem to the underground transmission lines by means of the numerical analysis Tool.

  • PDF