• Title/Summary/Keyword: underground concrete

Search Result 588, Processing Time 0.045 seconds

Development and Application of Low Permeable Concrete for Underground Structures (지하구조물을 위한 수밀콘크리트의 개발 및 실용화)

  • Paik, S.H.;Park, S.S.;Park, J.Y.;Paik, W.J.;Um, T.S.;Choi, L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.259-262
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, was compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and field test of low permeable concrete using fly ash were performed. From this study, fly ash concrete can control the penetration of water and chloride ion effectively by forming dense micro-structure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF

The evaluation of penetration protective performance using applied element method for reinforced concrete lining (AEM을 이용한 철근콘크리트 라이닝의 관입 방호성능 평가)

  • Joo, Gun-Wook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.377-396
    • /
    • 2019
  • Explosion after penetration of a warhead in an underground structure generally causes considerable displacement, breakage and extensive damage to the target. Therefore, in order to reduce the damage effect, it is required to design an underground structure protection against penetration. In this study, major factors for improvement of penetration protection performance of reinforced concrete underground structures using applied element method are divided into strength (concrete UCS) and density (concrete thickness, reinforcement layers, reinforcement diameters, reinforcement spacings). Based on these major factors, this study performed numerical analysis of simulation of dynamic response by penetrators under various conditions and analyzed the results. The results of this study are expected to be used as basis materials to improve penetration protection performance of reinforced concrete underground structures.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

Concrete Specification and Mixing Design for the Reduction of Slab Defects in Underground Parking Lot (지하주차장 슬래브 하자 저감을 위한 콘크리트 규격 및 배합설계)

  • Kim, Han-Sic;Ha, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.235-236
    • /
    • 2023
  • Concrete surfaces have weak surface strength due to bleeding and laitance, and problems such as peeling, cracking, and cracking may occur. In particular, underground parking lots can be said to be more vulnerable to peeling, breaking, and cracking if excessive loading of materials and equipment movement are not managed at the initial age after placing of concrete. Cracks, peeling, and cracking problems in slab concrete in underground parking lots of apartments can lead to leakage problems and affect finishing materials constructed on top of topping concrete, reducing the performance required for waterproof materials. Therefore, in this study, the bleeding and surface strength according to the standard of topping concrete and the use of admixture were reviewed to solve the crack, peeling, and cracking problems among the types of defects in underground parking lot slab concrete. As a result, it was derived that the optimal concrete compressive strength is 30MPa or more, and it is a reasonable performance design method to prohibit the substitution of admixtures.

  • PDF

Double Waterproof Method of Asphalt Mastic Membrane and Sheet on Concrete Structures. (ASPHALT MASTIC 도막 및 SHEET에 의한 이중방수공법)

  • 임채중;배문옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.845-852
    • /
    • 1999
  • Nealy, A large amount of underground spaces is constructed the form of deep basement in construction work. During their service life, Underground spaces have been keeping to dry enough for habitable or utilitarian used. This method is of use for waterproofness in underground spaces.

  • PDF

A Study of proposal for Waterproofing technology proper to the underground Concrete Structure (국내 지하구조물에 적용 가능한 방수 기술 제안 연구)

  • Seon, Yun-Suk;Kim, Jin-Sung;Park, Jin-Sang;Kwon, Shi-Won;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.409-412
    • /
    • 2006
  • The goal of waterproofing materials and construction method used for underground structure can be attained only when construction is done perfectly free of laitance, moisture and foreign substances on concrete surface. However, construction engineers agree that it is difficult to perfectly carry out such work in practice and realization of perfect waterproofing for underground structures is impossible in reality. Therefore, this study is to examine and explore waterproofing materials and construction method completely meeting environmental impacts that underground structures receive and thereby suggest waterproofing technology applicable to underground structures, in order to prevent problems caused by leakage for underground structures.

  • PDF

Development of Low Permeable Concrete for the Control of Deterioration in Underground Structures (지하구조물의 열화방지를 위한 수밀성 콘크리트의 개발)

  • Paik, S.H.;Park, S.S.;Park, J.Y.;Paik, W.J.;Um, T.S.;Choi, L.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.191-196
    • /
    • 1999
  • In underground reinforced concrete structures, such as drainage structure, water and chloride ion penetrated into concrete through the cracks of concrete and its permeable property, cause the corrosion of reinforcing steel bar, which accelerates the expansive cracks and deterioration of concrete. It is necessary to control those deterioration of underground structure by improving its permeability and durability through the reasonable solutions in design, construction and materials. In the present study, fly ash concrete, which has good material properties in long-term period, is compared and studied with plain concrete using ordinary portland cement in terms of fundamental mechanical properties, permeability, drying shrinkage and durability. Also, the mix design and its properties of low permeable concrete using fly ash are reviewed. From this study, fly ash concrete can conctrol the penetration of water and chloride ion effectively by forming dense microstructure of concrete. Therefore, fly ash concrete may increase the long-term function, performance and serviceability of underground structures.

  • PDF

Analysis of Underground RC Structures considering Elastoplastic Interface Element (탄소성 경계면 요소를 고려한 철근콘크리트 지하 구조물의 해석)

  • 남상혁;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.471-476
    • /
    • 2001
  • Even though structural performance evaluation techniques for reinforced concrete structures have been improved, there are still many problems in the evaluation of structural performance for underground structures which interacts with surrounding soils. Since experimental evaluation of underground RC structures considering the interaction with the surrounding soil medium is quite difficult to be simulated, the evaluation for underground RC structures using an analytical method can be applied very usefully, For underground structures interacted with surrounding soils, it is important to consider path-dependent RC constitutive model, soil constitutive model, and interface model between structure and soil, simultaneously. In this paper, an elastoplastic interface model which consider thickness was proposed and importance of interface model is discussed. The effects of stiffness of structures to entire underground RC system are investigated through numerical experiment for underground RC structure for different reinforcement ratios and thickness of interfaces.

  • PDF

Effect of spatial variability of concrete materials on the uncertain thermodynamic properties of shaft lining structure

  • Wang, Tao;Li, Shuai;Pei, Xiangjun;Yang, Yafan;Zhu, Bin;Zhou, Guoqing
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.205-217
    • /
    • 2022
  • The thermodynamic properties of shaft lining concrete (SLC) are important evidence for the design and construction, and the spatial variability of concrete materials can directly affect the stochastic thermal analysis of the concrete structures. In this work, an array of field experiments of the concrete materials are carried out, and the statistical characteristics of thermophysical parameters of SLC are obtained. The coefficient of variation (COV) and scale of fluctuation (SOF) of uncertain thermophysical parameters are estimated. A three-dimensional (3-D) stochastic thermal model of concrete materials with heat conduction and hydration heat is proposed, and the uncertain thermodynamic properties of SLC are computed by the self-compiled program. Model validation with the experimental and numerical temperatures is also presented. According to the relationship between autocorrelation functions distance (ACD) and SOF for the five theoretical autocorrelation functions (ACFs), the effects of the ACF, COV and ACD of concrete materials on the uncertain thermodynamic properties of SLC are analyzed. The results show that the spatial variability of concrete materials is subsistent. The average temperatures and standard deviation (SD) of inner SLC are the lowest while the outer SLC is the highest. The effects of five 3-D ACFs of concrete materials on uncertain thermodynamic properties of SLC are insignificant. The larger the COV of concrete materials is, the larger the SD of SLC will be. On the contrary, the longer the ACD of concrete materials is, the smaller the SD of SLC will be. The SD of temperature of SLC increases first and then decreases. This study can provide a reliable reference for the thermodynamic properties of SLC considering spatial variability of concrete materials.

Nonlinear calculation of moisture transport in underground concrete

  • Ba, M.F.;Qian, C.X.;Gao, G.B.
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.361-375
    • /
    • 2014
  • The moisture transport in underground concrete was experimentally investigated and the nonlinear model of moisture transport considering the effects of water diffusion, hydration of cementicious materials and water permeability was proposed. The consumed moisture content by self-desiccation could be firstly calculated according to evolved hydration degree of cement and mineral admixtures. Furthermore, the finite differential method was adopted to solve the moisture transport model by linearizing the nonlinear moisture diffusion coefficient. The comparison between experimental and calculated results showed a good agreement, which indicated that the proposed moisture model could be used to predict moisture content evolution in underground concrete members with drying-wetting boundaries.