• Title/Summary/Keyword: uncertain time-delay systems

Search Result 100, Processing Time 0.037 seconds

Engine torque and engine/automatic trandmission speed control systems using time delay control (시간지연 제어를 이용한 엔진 토크 및 엔진/자동변속기 속도 제어 시스템)

  • Song, Jae-Bok;Lee, Seung-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1996
  • Time delay control(TDC) law has been recently suggested as an effective control technique for nonlinear time-varying systems with uncertain dynamics and/or unpredictable disturbances. This paper focuses on the applications of the TDC algorithm to torque control of an engine system and speed control of an engine/automatic transmission system. Through the stability analysis of the engien system based on TDC, determination of the appropriate time delay and control factor is investigated. It was revealed that the size of time delay of the TDC law should be greater than that of transport delay of the system for both stability and better control performance. Simulation and experimental results for the engine torque control and engine/automatic transmission speed control systems show both relatively good command following and disturbance rejection properties. However, TDC controller shows rather slow responses when applied to the system with large transport delay.

  • PDF

Model Following Control of Linear Time-Invariant System with Uncertain Time Delay (불확실성 지연시간 시스템의 모델추종제어)

  • Kim, Hye-Kyung;Kim, Young Chol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.786-796
    • /
    • 2014
  • This paper presents a new approach to design a robust tracking controller for linear time-invariant systems with uncertain time-delay. By introducing the model following control (MFC) structure which consists of two loops in nature, we show that the controller is capable of having a predictive control action and effectively tracking the reference output with a desired transient response as well. Three design techniques to achieve good tracking performance are suggested. It is also analytically shown that the tracking performance of the proposed scheme is more robust than that of typical single-loop feedback structure. An illustrative example is given to compare the tracking performances of the proposed methods with a single loop method.

Parameter-dependent Robust Stability of Uncertain Singular Systems with Time-varying Delays (시변 시간지연을 가지는 불확실 특이시스템의 변수 종속 강인 안정성)

  • Kim, Jong-Hae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.4
    • /
    • pp.1-6
    • /
    • 2010
  • In this paper, we present a new delay-dependent and parameter-dependent robust stability condition for uncertain singular systems with polytopic parameter uncertainties and time-varying delay. The robust stability criterions based on parameter-dependent Lyapunov function are expressed as LMI (linear matrix inequality). Moreover, the proposed robust stability condition is a general algorithm for both singular systems and non-singular systems. Finally, numerical examples are presented to illustrate the feasibility and less conservativeness of the proposed method.

Delay-dependent Guaranteed Cost Control for Uncertain Time Delay System

  • Lee, In-Beum;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.62.4-62
    • /
    • 2001
  • In this paper, we propose a delay-dependent guaranteed cost controller design method for uncertain linear systems with time delay. The uncertainty is norm bounded and time-varying. A quadratic cost function is considered as the performance measure for the given system. Based on the Lyapunov method, sufficient condition, which guarantees that the closed-loop system is asymptotically stable and the upper bound value of the closed-loop cost function is not more than a specied one, is derived in terms of Linear Matrix Inequalities(LMIs) that can be solved sufficiently. A convex optimization problem can be formulated to design a guaranteed cost controller, which minimizes the upper bound value of the cost function. Numerical examples show the activeness of the proposed method.

  • PDF

Delay-dependent Robust H Control of Uncertain Linear Systems with Time-varying Delays and Randomly Occurring Disturbances (시변지연과 임의 발생 외란을 고려한 불확실 선형 시스템에 대한 지연의존 강인 H 제어)

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Cha, Eun-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.679-687
    • /
    • 2013
  • This paper proposes a new condition about delay-dependent robust $H_{\infty}$ control of uncertain linear systems with time-varying delay and randomly occurring disturbances. The norm bounded uncertainties are subjected to the system matrices. Based on Lyapunov stability theory, a sufficient condition for designing a controller gain such that the closed-loop systems are asymptotically stable with $H_{\infty}$ disturbance level ${\gamma}$ is formulated in terms of linear matrix inequalities (LMIs). Finally, two numerical examples are included to show the effectiveness of the presented method.

Guaranteed Cost Control for Discrete-time Linear Uncertain Systems with Time-varying Delay (시변 시간지연을 가지는 이산 선형 불확실성 시스템에 대한 보장 비용 제어)

  • Kim, Ki-Tae;Cho, Sang-Hyun;Lee, Sang-Kyung;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.6
    • /
    • pp.20-26
    • /
    • 2002
  • This paper deals with the guaranteed cost control problems for a class of discrete-time linear uncertain systems with time-varying delay. The uncertain systems under consideration depend on time-varying norm-bounded parameter uncertainties. We address the existence condition and the design method of the memoryless state feedback control law such that the closed loop system not only is quadratically stable but also guarantees an adequate level of performance for all admissible uncertainties. Through some changes of variables and Schur complement, It is shown that the sufficient condition can be rewritten as an LMI(linear matrix inequality) form in terms of all variables.

Robust $L_2-L_{\infty}$ Filter Design for Uncertain Time-Delay Systems via a Parameter-Dependent Lyapunov Function Approach (파라미터에 종속적인 리아푸노프 함수 기법에 의한 불확실 시간지연 시스템을 위한 강인한 $L_2-L_{\infty}$ 필터 설계)

  • Choi, Hyoun-Chul;Jung, Jin-Woo;Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.177-178
    • /
    • 2008
  • An LMI-based method for robust $L_2-L_{\infty}$ filter design is proposed for poly topic uncertain time-delay systems. By using the Projection Lemma and a suitable linearizing transformation, a strict LMI condition for $L_2-L_{\infty}$ filter design is obtained, which does not involve any iterations for design-parameter search, any couplings between the Lyapunov and system matrices, nor any system-dependent filter parameterization. Therefore, the proposed condition enables one to easily adopt, with help of efficient numerical solvers, a parameter-dependent Lyapunov function approach for reducing conservatism, and to design both robust and parameter-dependent filters for uncertain and parameter-dependent time-delay systems, respectively.

  • PDF

Robust H\ulcorner Control for Delayed System with Time-Varying Norm-Bounded Parameter Uncertainty

  • Kim, Jong-Hae;Jeung, Eun-Tae;Park, Hong-Bea
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.33-38
    • /
    • 1996
  • In this paper, we present a robust H\ulcorner control design method for parameter uncertain systems that have delay in both state and control input. Through a certain algebraic Riccati inequality approach, a state feedback controller is obtained. The proposed state feedback controller stabilizes parameter uncertain delay systems and guarantees disturbance attenuation within a prescribed level. An illustrative example is given to demonstrate the results of the proposed method.

  • PDF

Improved Delay-Dependent Stability Conditions for Uncertain Time-Delay Systems (불확실 시간지연 시스템을 위한 개선된 지연 종속적 안정성 조건)

  • Choi, Hyoun-Chul;Shim, Hyung-Bo;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1515-1516
    • /
    • 2008
  • This paper proposes a new delay-dependent stability condition for uncertain time-delay systems, which is simple yet not as conservative as previous ones in the literature. The proposed condition, which is formulated in terms of linear matrix inequalities, does not employ any model transformation and therefore is free from the conservatism due to model transformations. Numerical examples are presented to show the usefulness of the proposed condition.

  • PDF

Delay-Dependent Robust Stabilization and Non-Fragile Control of Uncertain Discrete-Time Singular Systems with State and Input Time-Varying Delays (상태와 입력에 시변 시간지연을 가지는 불확실 이산시간 특이시스템의 지연종속 강인 안정화 및 비약성 제어)

  • Kim, Jong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.121-127
    • /
    • 2009
  • This paper deals with the design problem of robust stabilization and non-fragile controller for discrete-time singular systems with parameter uncertainties and time-varying delays in state and input by delay-dependent Linear Matrix Inequality (LMI) approach. A new delay-dependent bounded real lemma for singular systems with time-varying delays is derived. Robust stabilization and robust non-fragile state feedback control laws are proposed, which guarantees that the resultant closed-loop system is regular, causal and stable in spite of time-varying delays, parameter uncertainties, and controller gain variations. A numerical example is given to show the validity of the design method.