• Title/Summary/Keyword: ultrasound imaging.

Search Result 680, Processing Time 0.033 seconds

INDUSTRIAL MATHEMATICS IN ULTRASOUND IMAGING

  • JANG, JAESEONG;AHN, CHI YOUNG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.175-202
    • /
    • 2016
  • Ultrasound imaging is a widely used tool for visualizing human body's internal organs and quantifying clinical parameters. Due to its advantages such as safety, non-invasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.

A Diagnostic Ultrasound Imaging System (초음파 영상진단장치)

  • Lee, Seong-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.217-232
    • /
    • 1999
  • The ability to see the internal organs of the human body in a noninvasive way is a powerful diagnostic tool of modern medicine. Among these imaging modalities such as X-ray, MRI, and ultrasound. MRI and ultrasound are presenting much less risk of undesirable damage of both patient and examiner. In fact, no deleterious effects have been reported as a result of clinical examination by using MRI and ultrasound diagnostic equipment. As a result. their market volume has been rapidly increased. MRI has a good resolution. but there are a few disadvantages such as high price. non-real-time imaging capability. and expensive diagnostic cost. On the other hand, the ultrasound imaging system has inherently poor resolution as compared with X-ray and MRI. In spite of its poor resolution, the ultrasound diagnostic equipment is lower in price and has an ability of real-time imaging as compared with the others. As a result. the ultrasound imaging system has become general and essential modality for imaging the internal organs of human body. In this review various researches and developments to enhance the resolution of the ultrasound images are explained and future trends of the ultrasound imaging technology are described.

  • PDF

Special Issue for Biomedical Ultrasound: Towards Further Advances in Fundamentals and Applications by Comprehensive Reviews

  • Kim, Yong-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.107-110
    • /
    • 2010
  • In this paper, the rationale and contents of the special issue of the Journal of the Acoustical Society of Korea regarding comprehensive reviews on past, present and future of biomedical ultrasound are described. Brief descriptions of invited articles are given, and efforts by all contributing authors are gratefully acknowledged.

Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging

  • Nam, Seung Yun;Emelianov, Stanislav Y.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-155
    • /
    • 2014
  • Although various ophthalmic imaging methods, including fundus photography and optical coherence tomography, have been applied for effective diagnosis of ocular diseases with high spatial resolution, most of them are limited by shallow imaging penetration depth and a narrow field of view. Also, many of those imaging modalities are optimized to provide microscopic anatomical information, while functional or cellular information is lacking. Compared to other ocular imaging modalities, photoacoustic imaging can achieve relatively deep penetration depth and provide more detailed functional and cellular data based on photoacoustic signal generation from endogenous contrast agents such as hemoglobin and melanin. In this paper, array-based ultrasound and photoacoustic imaging was demonstrated to visualize pigmentation in the eye as well as overall ocular structure. Fresh porcine eyes were visualized using a real-time ultrasound micro-imaging system and an imaging probe supporting laser pulse delivery. In addition, limited photoacoustic imaging field of view was improved by an imaging probe tilting method, enabling visualization of most regions of the retina covered in the ultrasound imaging.

The Use of Real-Time Ultrasound Imaging for Feedback during Abdominal Hollowing (복부 할로잉 운동에서 실시간 초음파 영상 피드백의 사용 효과)

  • Kwon, Nam-Hee;Lee, Hyun-Ok;Park, Du-Jin
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.6 no.3
    • /
    • pp.303-310
    • /
    • 2011
  • Purpose : This study examined the feedback effect of real-time ultrasound imaging on the thickness of transversus abdominis(TrA), internal abdominal oblique(IO) and external abdominal oblique(EO) during abdominal hollowing exercise(AHE) in crook lying. Methods : We performed this study on 30 healthy men who voluntarily consented to participate in this study after listening to its purpose and method. All subject were divided into an experimental group(n=15) with using the real-time ultrasound imaging feedback(RUIF) and a control group(n=15) without the RUIF The thickness changes between rest and AHE were compared between the two groups in crook lying. Results : The difference in TrA and EO thickness changes between the groups were significant in crook lying (p<0.05). Conclusion : The group with using real-time ultrasound imaging feedback showed a higher increase in the thickness of TrA than the other group without real-time ultrasound imaging feedback. And the thickness of EO in the group with using real-time ultrasound imaging feedback decreased than the other group without real-time ultrasound imaging feedback. If the muscle thickness can be regarded as an indicator of muscle activity, RUIF will be helpful for inducing the independent activity of TrA by reducing the activities of abdominal muscles such as EO.

Ultrasound-optical imaging-based multimodal imaging technology for biomedical applications (바이오 응용을 위한 초음파 및 광학 기반 다중 모달 영상 기술)

  • Moon Hwan Lee;HeeYeon Park;Kyungsu Lee;Sewoong Kim;Jihun Kim;Jae Youn Hwang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.429-440
    • /
    • 2023
  • This study explores recent research trends and potential applications of ultrasound optical imaging-based multimodal technology. Ultrasound imaging has been widely utilized in medical diagnostics due to its real-time capability and relative safety. However, the drawback of low resolution in ultrasound imaging has prompted active research on multimodal imaging techniques that combine ultrasound with other imaging modalities to enhance diagnostic accuracy. In particular, ultrasound optical imaging-based multimodal technology enables the utilization of each modality's advantages while compensating for their limitations, offering a means to improve the accuracy of the diagnosis. Various forms of multimodal imaging techniques have been proposed, including the fusion of optical coherence tomography, photoacoustic, fluorescence, fluorescence lifetime, and spectral technology with ultrasound. This study investigates recent research trends in ultrasound optical imaging-based multimodal technology, and its potential applications are demonstrated in the biomedical field. The ultrasound optical imaging-based multimodal technology provides insights into the progress of integrating ultrasound and optical technologies, laying the foundation for novel approaches to enhance diagnostic accuracy in the biomedical domain.

Interactive image segmentation for ultrasound vascular imaging (초음파 혈관 영상의 상호적 영상 분할)

  • Lee, Onseok;Kim, Mingi;Ha, Seunghan
    • Journal of the Korea Convergence Society
    • /
    • v.3 no.4
    • /
    • pp.15-21
    • /
    • 2012
  • Image segmentation for object to extract data from ultrasound acquired is an essential preprocessing step for the effective diagnosis. Various image segmentation methods have been studied. In this study, interactive image segmentation method by graph cut algorithm is proposed to develop a variety of applications of vascular ultrasound imaging and diagnostics. General imaging and vascular ultrasound imaging segmentation by entering constrain condition such as foreground and background. In the future it will be able to develop new ultrasound diagnostics.

Ultrasound Elasticity Imaging Methods (초음파 탄성 영상법)

  • Jeong, Mok-Kun;Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.1-10
    • /
    • 2010
  • The difference in echogenicity between cancerous and normal tissues is not quite distinguishable in ultrasound B-mode imaging. However, tumor or cancer in breast or prostate tends to be stiffer than the surrounding normal tissue. Thus, imaging the stiffness contrast between the two different tissue types is helpful for quantitative diagnosis, and such a method of imaging the elasticity of human tissue is collectively referred to as ultrasound elasticity imaging. Recently, elasticity imaging has established itself as an effective diagnostic modality in addition to ultrasound B-mode imaging. The purpose of this paper is to present various elasticity imaging methods that have been reported up to now and to describe their principles of operation and characteristics.

Associations Between Mammography and Ultrasound Imaging Features and Molecular Characteristics of Triple-negative Breast Cancer

  • Li, Bo;Zhao, Xin;Dai, Shao-Chun;Cheng, Wen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.8
    • /
    • pp.3555-3559
    • /
    • 2014
  • Background: The triple-negative breast cancer (TNBC) is an aggressive cancer characterized by the absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Preoperative mammography and ultrasound features of TNBC may potentially suggest characteristics of the disease and assist in treatment decisions. Materials and Methods: The study covered 153 patients with TNBC from May 2011 to May 2012 who were confirmed by postoperative pathology results in our hospital. We compared the radiological findings among the patients and sought to determine the significant iconographic features. The biomarkers p53 and Ki-67 are regarded as significant factors in TNBC. They were therefore used to divide the TNBC into four groups for assessment of relationships with TNBC imaging features. Results: On mammography, most TNBCs exhibit obscure (44.3%) masses. On ultrasound, the majority of masses (95.4%) were predominantly indistinct (50.7%), irregular (76.0%) or featuring posterior echo enhancement/shadowing. Color Doppler flow imaging (CDFI) emphasized hypervascular (32.9%) masses. Differences in CDFI by ultrasound among the four groups were statistically significant (p=0.009). There were obvious differences in the percentages of spiculated margin (p=0.049) and intensive posterior echo (p=0.006) with spotty flow imaging by ultrasound between the Ki-67 (+) p53 (+) and other groups. Conclusions: A combination of mammography and ultrasound revealed the imaging characteristics of TNBC included an obscure mass with less attenuated posterior echoes and some vascularity. A worse prognosis was associated with spiculated margin and intensive posterior echoes with spotty flow imaging.

Ultrasonic Transducers for Medical Volumetric Imaging

  • Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.3E
    • /
    • pp.111-118
    • /
    • 2010
  • Three-dimensional ultrasound imaging is a new, exciting technology that allows physicians to use ultrasound to view pathology as a volume, thereby enhancing comprehension of patient anatomy. In this paper, a brief history of the 3-D ultrasound imaging is described in accordance with the development of transducer technology. Then, two representative types of 3-D imaging transducers are reviewed with description of the concept and operation principle of each type: mechanical transducer and matrix array transducer. The mechanical transducer is detailed into free-hand scanning and sequential scanning types. Advantages of each transducer over the other and the technical issues for further performance enhancement are also presented.